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EXPERIMENTAL DETAILS

Synthesis of formamidinium iodide [FAI, HC(NH,),I]

Briefly, 10 g formamidine acetate salt (Sigma Aldrich, 99%) was dissolved in 10 ml of
anhydrous methanol (Sigma-Aldrich, 99.8%) and the solution was cooled in an ice bath. 12.7 ml
of hydroiodic acid (Sigma Aldrich, 57 wt % in H,O) was slowly added into the solution. The
solution was allowed to stir for 2 hours and was subsequently dried using rotary evaporator. The
precipitate was re-dissolved and recrystallized from diethyl ether (Fisher Scientific, 99.99%).
The purification was repeated until white solid was obtained. Yield: 83 %. 'H NMR (400 MHz,
DMSO-dg): 8 8.66 (s, 4H), 7.86 (s, 1H). 1*C NMR (400 MHz, DMSO-dy): 6 158.10.

Device fabrication

The etched Fluorine doped tin oxide (FTO) substrates (Pilkington TEC 15) were cleaned by
ultrasonication in decon-soap solution, deionized water and ethanol respectively. A compact
layer of TiO, was coated onto the FTO substrate by spray pyrolysis process with titanium
diisopropoxide bis(acetylacetonate) solution (Sigma-Aldrich, 75% in 2-propanol) diluted with
ethanol (Sigma-Aldrich, >99.8%) in volume ration of 1:9. After cooling to room temperature, the
substrates were treated in a 40 mM TiCly solution (Wako Pure Chemical Industries, >99 %) for
30 min at 70 °C. Mesoporous TiO, film was formed by spin-coating DYESOL-30NRD paste
(Dyesol, 30 nm TiO, nanoparticles), which was diluted with ethanol (Sigma-Aldrich, >99.8%)
with a ratio of 1:5 w/w, and then sintered at 500 °C for 30 mins. The films were then treated
again with 40 mM TiCly solution at 70 °C for 30 mins and heated at 500 °C again for 30 mins.
FASnI; film was deposited by spin-coating 1M perovskite solution (dissolving 186 mg of Snl,
99.99 % from Sigma-Aldrich, and 86 mg of formamidinium iodide in 500 pL of anhydrous

DMF, 99.8 % from Sigma-Aldrich) onto the mesoporous film at 2000 rpm for 40s and then



heated at 70 °C for 30 mins. For perovskite solution with SnF, addition, 10, 20, 30 and 40 mol %
(7.8 mg, 15.7 mg, 23.6 mg and 31.4 mg respectively ) of SnF, (Sigma-Aldrich, 99%) was added
into the 1M FASnl; solution which has been described above. 2,2°,7,7’-tetrakis(N,N’-di-p-
methoxyphenylamine)-9,9’-spirobifluorene (spiro-OMeTAD, Merck livilux SHT-263) was
prepared in anhydrous chlorobenzene (Sigma-Aldrich, 99.8 %) with a concentration of
100mg/ml. 15.92 pl of fert-butylpyridine (96 % from Sigma-Aldrich) and 9.68 pl of lithium
bis(trifluoromethylsulfonyl)imide (99.95 % from Sigma-Aldrich, 520mg/ml in acetonitrile) were
added directly to the 300 pl of spiro-OMeTAD solution. 3.6 mg of tris(2-(1H-pyrazol-1-
yl)pyridine)cobalt(III) tris(hexafluorophosphate) Co-dopant (FK102, synthesized according to
literature!) was pre-dissolved into 13 pl of anhydrous acetonitrile (Sigma-Aldrich, 99.8 %) and
added into the hole-transport material solution. The as-prepared spiro-OMeTAD solution was
spin-coated onto the perovskite film at 4000 rpm for 30s. A 100 nm Au cathode layer was
deposited by thermal evaporation with a 0.2 cm? metallic mask. All the fabrication processes and
device characterizations were conducted in glove-box.
Reference
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Characterization
'H and '3C NMR data were obtained on a Bruker DPX 400 MHz spectrometer with chemical
shifts referenced to DMSO-d4. Photovoltaic measurements utilized an AM 1.5G solar simulator
equipped with a 450 W xenon lamp (model 81172, Oriel). Its power output was adjusted to
match AM 1.5G sunlight (100 mW/cm?) by using a reference Si photodiode. I-V curves were

obtained by applying an external bias to the cell and measuring the generated photocurrent with a



Keithley model 2612A digital source meter. All devices were measured by masking the active
arca with a black tape mask. Incident-photon-to-current conversion efficiency (IPCE) was
measured using a PVE300 (Bentham), with dual Xenon/quartz halogen light source, measured in
DC mode and no bias light was used. The absorption spectra were obtained using a UV-Vis
spectrometer (SHIMADZU UV-3600 UV-Vis-NIR Spectrophotometer) with an integrated
sphere (ISR-3100).

The morphology features and cross-sectional images of devices were observed using a field-
emission scanning electron microscope (FE-SEM, JOEL JSM 6700F). XRD patterns of
perovskite films were collected using a Bruker D8 Advance diffractometer fitted with a CuK,
source operated at 40kV and 40mA, a 1° divergence slit, 0.3mm receiving slit, a secondary
graphite monochromator and a Lynxeye silicon strip detector. The XPS and UPS are measured in
a home-made UHV system with the base pressure at 3x10-!0 torr. A hemispheric electron
analyzer (Omicron, EA125) is used to detect the photoelectron excited by a monochromatic Al
Ka radiation (hv=1486.7¢V) or UV light (He I, hv=21.2e¢V). Thermogravimetric analysis (TGA)
was conducted using TGA Q500 V6.7 (TA Instruments) with a ramp of 10 °C/min under
nitrogen atmosphere. Differential scanning calorimetry (DSC) was performed on a Q10 V9.9

Build 303 calorimeter (TA Instruments) at a rate of 10 °C/min under nitrogen.
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Figure S1. XRD patterns of FASnl; at different annealing temperatures.
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Figure S2. (a) Differential scanning calorimetry (DSC) measurement of FASnl; The

measurement is carried out with heating and cooling rates of £5 °C/min. (b) TGA curve of
FASnI; powder.
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Figure S3. XPS spectra of FASnl;5:20%SnF, and pure FASnl; films deposited from solutions
stored overnight in gloevbox conditions. The later shows significant arise of Sn*". Photos

indicated the colour change in FASnl; without SnF, addition.
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Figure S4. (a-c) Top view FESEM images of FASnl; perovskite film with different mol% of
SnF, added, on mesporous TiO, layers. (d) FESEM images of surface morphology of
FASnlI;:20%SnF, film on mesoporous TiO, layer at low magnification. (e) Bare TiO, surface
observed at the bottom of the nanoplatelet-like structure is indicated within the red circle.
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Figure SS. Optimization of addition of SnF, into FASnl;. The devices were fabricated on 350

0.5

0.4+

0.2

0.1

0.0

20
SnF, concentration (mol %)

g *

v

T T T T T
0 10 20 30 40

SnF, concentration (mol %)

300
250
—~ 2004
o 150 4

100

504

20

10 20 30
SnF, concentration (mol %)

o
L

Efficiency (%)
P=

o
o
1

0.0 ¥

T T T
20 30 40

SnF, concentration (mol %)

nm mesoporous TiO, layers with spiro-OMeTAD as hole conductor.
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Figure S6. UPS data of nanocrystalline TiO,.
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Figure S7. Cross-sectional FESEM images of full device (left) and the schematic structures
(right) with different TiO, layer thickness.
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Figure S8. Photovoltaic parameters of devices with different TiO, thicknesses. 7 devices were
fabricated for each thickness.
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Figure S9. IPCE of FASnI; deivce with 20 % SnF, addition.
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Figure S10. /-V curves of FASnl; (20% SnF, addition) device using (a) 500 nm and (b) 350 nm
mesoporous TiO, film in reverse (Voc—>Jsc) and forward (Jsc=> Voc) scans.



