# **Supplementary Information**

Formamidinium tin-based perovskite with low Eg for photovoltaic applications

*Teck Ming Koh*,<sup>*a,b*</sup> *Thirumal Krishnamoorthy*,<sup>*b*</sup> *Natalia Yantara*,<sup>*a,b*</sup> *Chen Shi*,<sup>*c*</sup> *Wei Lin Leong*,<sup>*d*</sup> *Pablo P. Boix*,<sup>*b*</sup> *Andrew C. Grimsdale*,<sup>*a*</sup> *Subodh G. Mhaisalkar*\*,<sup>*a,b*</sup> *Nripan Mathews*\*<sup>*a,b*</sup>

<sup>*a*</sup> School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.

<sup>b</sup> Energy Research Institute @NTU (ERI@N), Singapore, Singapore.

<sup>c</sup> School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.

<sup>*d*</sup> Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A\*STAR), Singapore, Singapore.

\*Addresses correspondence to: E-mail: <u>Subodh@ntu.edu.sg</u>, <u>Nripan@ntu.edu.sg</u>

# **EXPERIMENTAL DETAILS**

# Synthesis of formamidinium iodide [FAI, HC(NH<sub>2</sub>)<sub>2</sub>I]

Briefly, 10 g formamidine acetate salt (Sigma Aldrich, 99%) was dissolved in 10 ml of anhydrous methanol (Sigma-Aldrich, 99.8%) and the solution was cooled in an ice bath. 12.7 ml of hydroiodic acid (Sigma Aldrich, 57 wt % in H<sub>2</sub>O) was slowly added into the solution. The solution was allowed to stir for 2 hours and was subsequently dried using rotary evaporator. The precipitate was re-dissolved and recrystallized from diethyl ether (Fisher Scientific, 99.99%). The purification was repeated until white solid was obtained. Yield: 83 %. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>):  $\delta$  8.66 (s, 4H), 7.86 (s, 1H). <sup>13</sup>C NMR (400 MHz, DMSO-d<sub>6</sub>):  $\delta$  158.10.

#### **Device fabrication**

The etched Fluorine doped tin oxide (FTO) substrates (Pilkington TEC 15) were cleaned by ultrasonication in decon-soap solution, deionized water and ethanol respectively. A compact layer of TiO<sub>2</sub> was coated onto the FTO substrate by spray pyrolysis process with titanium diisopropoxide bis(acetylacetonate) solution (Sigma-Aldrich, 75% in 2-propanol) diluted with ethanol (Sigma-Aldrich,  $\geq$ 99.8%) in volume ration of 1:9. After cooling to room temperature, the substrates were treated in a 40 mM TiCl<sub>4</sub> solution (Wako Pure Chemical Industries,  $\geq$ 99 %) for 30 min at 70 °C. Mesoporous TiO<sub>2</sub> film was formed by spin-coating DYESOL-30NRD paste (Dyesol, 30 nm TiO<sub>2</sub> nanoparticles), which was diluted with ethanol (Sigma-Aldrich,  $\geq$ 99.8%) with a ratio of 1:5 w/w, and then sintered at 500 °C for 30 mins. The films were then treated again with 40 mM TiCl<sub>4</sub> solution at 70 °C for 30 mins and heated at 500 °C again for 30 mins. FASnI<sub>3</sub> film was deposited by spin-coating 1M perovskite solution (dissolving 186 mg of SnI<sub>2</sub>, 99.99 % from Sigma-Aldrich, and 86 mg of formamidinium iodide in 500 µL of anhydrous DMF, 99.8 % from Sigma-Aldrich) onto the mesoporous film at 2000 rpm for 40s and then

heated at 70 °C for 30 mins. For perovskite solution with SnF<sub>2</sub> addition, 10, 20, 30 and 40 mol % (7.8 mg, 15.7 mg, 23.6 mg and 31.4 mg respectively ) of SnF<sub>2</sub> (Sigma-Aldrich, 99%) was added into the 1M FASnI<sub>3</sub> solution which has been described above. 2,2',7,7'-tetrakis(N,N'-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD, Merck livilux SHT-263) was prepared in anhydrous chlorobenzene (Sigma-Aldrich, 99.8 %) with a concentration of 100mg/ml. 15.92 µl of *tert*-butylpyridine (96 % from Sigma-Aldrich) and 9.68 µl of lithium bis(trifluoromethylsulfonyl)imide (99.95 % from Sigma-Aldrich, 520mg/ml in acetonitrile) were added directly to the 300 µl of spiro-OMeTAD solution. 3.6 mg of tris(2-(1*H*-pyrazol-1-yl)pyridine)cobalt(III) tris(hexafluorophosphate) Co-dopant (FK102, synthesized according to literature<sup>1</sup>) was pre-dissolved into 13 µl of anhydrous acetonitrile (Sigma-Aldrich, 99.8 %) and added into the hole-transport material solution. The as-prepared spiro-OMeTAD solution was spin-coated onto the perovskite film at 4000 rpm for 30s. A 100 nm Au cathode layer was deposited by thermal evaporation with a 0.2 cm<sup>2</sup> metallic mask. All the fabrication processes and device characterizations were conducted in glove-box.

# Reference

1. J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N. L. Cevey-Ha, C. Y. Yi, M. K. Nazeeruddin and M. Grätzel, J. Am. Chem. Soc., 2011, 133, 18042-18045.

## Characterization

<sup>1</sup>H and <sup>13</sup>C NMR data were obtained on a Bruker DPX 400 MHz spectrometer with chemical shifts referenced to DMSO-d<sub>6</sub>. Photovoltaic measurements utilized an AM 1.5G solar simulator equipped with a 450 W xenon lamp (model 81172, Oriel). Its power output was adjusted to match AM 1.5G sunlight (100 mW/cm<sup>2</sup>) by using a reference Si photodiode. I–V curves were obtained by applying an external bias to the cell and measuring the generated photocurrent with a

Keithley model 2612A digital source meter. All devices were measured by masking the active area with a black tape mask. Incident-photon-to-current conversion efficiency (IPCE) was measured using a PVE300 (Bentham), with dual Xenon/quartz halogen light source, measured in DC mode and no bias light was used. The absorption spectra were obtained using a UV-Vis spectrometer (SHIMADZU UV-3600 UV-Vis-NIR Spectrophotometer) with an integrated sphere (ISR-3100).

The morphology features and cross-sectional images of devices were observed using a fieldemission scanning electron microscope (FE-SEM, JOEL JSM 6700F). XRD patterns of perovskite films were collected using a Bruker D8 Advance diffractometer fitted with a CuK<sub> $\alpha$ </sub> source operated at 40kV and 40mA, a 1° divergence slit, 0.3mm receiving slit, a secondary graphite monochromator and a Lynxeye silicon strip detector. The XPS and UPS are measured in a home-made UHV system with the base pressure at 3x10-<sup>10</sup> torr. A hemispheric electron analyzer (Omicron, EA125) is used to detect the photoelectron excited by a monochromatic A1 K $\alpha$  radiation (hv=1486.7eV) or UV light (He I, hv=21.2eV). Thermogravimetric analysis (TGA) was conducted using TGA Q500 V6.7 (TA Instruments) with a ramp of 10 °C/min under nitrogen atmosphere. Differential scanning calorimetry (DSC) was performed on a Q10 V9.9 Build 303 calorimeter (TA Instruments) at a rate of 10 °C/min under nitrogen.



Figure S1. XRD patterns of FASnI<sub>3</sub> at different annealing temperatures.



**Figure S2**. (a) Differential scanning calorimetry (DSC) measurement of  $FASnI_3$  The measurement is carried out with heating and cooling rates of  $\pm 5$  °C/min. (b) TGA curve of  $FASnI_3$  powder.



**Figure S3**. XPS spectra of  $FASnI_3:20\%SnF_2$  and pure  $FASnI_3$  films deposited from solutions stored overnight in gloevbox conditions. The later shows significant arise of  $Sn^{4+}$ . Photos indicated the colour change in  $FASnI_3$  without  $SnF_2$  addition.



**Figure S4**. (a-c) Top view FESEM images of FASnI<sub>3</sub> perovskite film with different mol% of  $SnF_2$  added, on mesporous TiO<sub>2</sub> layers. (d) FESEM images of surface morphology of FASnI<sub>3</sub>:20%SnF<sub>2</sub> film on mesoporous TiO<sub>2</sub> layer at low magnification. (e) Bare TiO<sub>2</sub> surface observed at the bottom of the nanoplatelet-like structure is indicated within the red circle.



**Figure S5**. Optimization of addition of  $SnF_2$  into FASnI<sub>3</sub>. The devices were fabricated on 350 nm mesoporous TiO<sub>2</sub> layers with spiro-OMeTAD as hole conductor.



Figure S6. UPS data of nanocrystalline TiO<sub>2</sub>.



**Figure S7**. Cross-sectional FESEM images of full device (left) and the schematic structures (right) with different  $TiO_2$  layer thickness.



**Figure S8**. Photovoltaic parameters of devices with different  $TiO_2$  thicknesses. 7 devices were fabricated for each thickness.



Figure S9. IPCE of FASnI<sub>3</sub> deivce with 20 % SnF<sub>2</sub> addition.



**Figure S10**. *I-V* curves of FASnI<sub>3</sub> (20% SnF<sub>2</sub> addition) device using (a) 500 nm and (b) 350 nm mesoporous TiO<sub>2</sub> film in reverse (Voc $\rightarrow$ Jsc) and forward (Jsc $\rightarrow$ Voc) scans.