Supporting information

- BET measurements

Results from TiS₃ grown on Ti discs show a BET surface area of $1.16 \pm 0.03 \text{m}^2/\text{g}$. To know real area of TiS₃ nanoribbons, it is necessary to subtract the mass of the titanium substrate to the whole sample mass. Commonly smooth metallic surface (as that of Ti substrate) has around $1.00 \pm 0.02 \text{m}^2/\text{g}$. Results show a TiS₃ real area of $67 \text{m}^2/\text{g}$. Porosity has not been found in this material. Figure 1 shows the isotherm of this measures.

Figure S1. Experimental nitrogen adsorption of TiS₃ nanoribbons at different relative pressure

- X-ray diffraction of TiS₃ and TiS₃ flattened.

Figure S2. a) X- ray diffraction pattern of TiS_3 nanoribbons and b) X- ray diffraction pattern of flattened TiS_3 .

 O
 Ti

 Ti
 Ti

 Secure 4470 cts Cursor: -0.311 keV (0 cts)
 keV

- EDX analysis

*Figure S3. Results of EDX Analysis of TiS*₃ *samples.*

- Mott-Schottky plots at different frequencies

Figure S4. Capacitance of TiS_3 nanoribbons by EIS at different frequencies are indicated on the *figures*.

- Stability

 TiS_3 XRD pattern after hydrogen evolution process. It appears to be is similar to that of TiS_3 before that process. It means that chemical changes and/or structural degradation have not been occurs.

*Figure S5. X-ray diffraction of TiS*₃ *samples after hydrogen generation experiments.*