Supplementary Information

Li₃Fe₂(HPO₃)₃Cl: An Electroactive Iron Phosphite As a New Polyanionic Cathode Material

for Li-ion Battery

Hooman Yaghoobnejad Asl,^a Kartik Ghosh,^b Melissa P. Vidal Meza^c and Amitava Choudhury^{a,*}

^aDepartment of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA

^bDepartment of Physics, Astronomy and Materials Science and Center for Applied Science and Engineering, Missouri State University, Springfield, Missouri 65897, USA.

^cDepartment of Chemical and Biological Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA

Figure S1. $\chi_m T$ versus T plot indicating the antiferromagnetic behavior of $Li_3Fe_2(HPO_3)_3Cl$ phase at low temperatures.

Figure S2. Cyclic voltammograms of $Li_3Fe_2(HPO_3)_3Cl$ cathode with scanning to the lower vertex potential initially.

Figure S3 Voltage-charge derivative curve versus potential for discharge (blue) and charge (red) steps of Li₃Fe₂(HPO₃)₃Cl cathode material.

Figure S4 PXRD Rietveld refinement of $Li_3Fe_2(HPO_3)_3Cl$ phase after subjected to charge to 4.5 V vs. Li^+/Li .

Temperature (°C)	L1 (H)	R1 (Ω)	R2 (Ω)	CPE1-T (F)	CPE1-P	W1-R (Ω)	W1-τ (s)	W1-P
23	4.1 × 10- 6	11.8	341.5	5.35 × 10 ⁻⁵	0.64	6039	204.4	0.70
29	8.8 × 10- 6	9.9	303.3	1.09 × 10-4	0.55	5295	206.5	0.71
33	7.8 × 10- 6	8.2	259.5	7.44 × 10 ⁻⁵	0.62	4707	206.3	0.70
36	7.1 × 10- 6	7.5	254.4	7.43 × 10 ⁻⁵	0.62	4634	205.2	0.70
40	6.5 × 10- 6	6.3	236.1	8.64 × 10 ⁻⁵	0.61	4234	202.8	0.70
45	4.9 × 10- 6	5.4	215.6	1.18 × 10-4	0.59	3733	202.6	0.70
50	6.3 × 10- 6	4.7	206.5	1.43 × 10 ⁻⁴	0.58	3337	198.2	0.70

Table S1 Impedance Fit Parameters for the equivalent circuit shown in Figure 12.

 $Z_{ws} = \frac{R_W \times tanh(j\omega\tau)^P}{(j\omega\tau)^P} \text{ where } \tau = \frac{L^2}{D} \text{ and } L \text{ and } D \text{ are effective diffusion length and diffusion}$

coefficients, respectively.