Supplementary Information

Hierarchical assembly of SnO₂ nanowires on MnO₂ nanosheets: a novel 1/2D hybrid architecture for highcapacity, reversible lithium storage

Long Pan,^a Ke-Xin Wang,^c Xiao-Dong Zhu,^{*b} Xu-Ming Xie^{*a} and Yi-Tao Liu^{*a}

^aKey Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University,

Beijing 100084, China

^bAcademy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology,

Harbin 150080, China

^cDepartment of Chemistry, Harbin Institute of Technology, Harbin 150001, China

Fig. S1 XRD pattern of MnO₂ nanosheets showing four well-resolved peaks (001, 002, -111 and 005) of δ -MnO₂ (JCPDS card No. 80–1098).

Fig.S2 Raman spectrum of MnO_2 nanosheets showing two well-resolved peaks. Note that the peak at the higher wavenumber can be attributed to the symmetric stretching vibration $v_2(Mn-O)$ of MnO_6 groups, while the peak at the lower wavenumber can be attributed to the $v_3(Mn-O)$ stretching vibration in the basal plane of [MnO₆] sheets.^{1–3}

1 J. Zhou, L. Yu, M. Sun, S. Yang, F. Ye, J. He and Z. Hao, Ind. Eng. Chem. Res., 2013, 52, 9586.

2 C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach and J. P. Pereira-Ramos, *Solid State Ionics*, 2003, **159**, 345.

3 A. K. Sinha, M. Pradhan and T. Pal, J. Phys. Chem. C, 2013, 117, 23976.

Fig. S3 TGA curve of MnO₂ nanosheets showing 12.0 wt% organic content and 9.2 wt% crystal water content. Note that our K⁺-intercalated MnO₂ nanosheets have a chemical formula of $K_{0.46}Mn_{1.54}Mn_{0.46}O_4 \cdot 1.4H_2O_1$ corresponding to a theoretical crystal water content of 11.6 wt%. The actual crystal water content is calculated to be 10.4 wt% when we take into account the 12.0% organic content, which is in agreement with the theoretical value.

1 A. K. Sinha, M. Pradhan and T. Pal, J. Phys. Chem. C, 2013, 117, 23976.

Fig. S4 XRD pattern of SnO₂ nanowires showing eight well-resolved peaks (110, 101, 111, 211, 220, 002, 221 and 112) of rutile SnO₂ (JCPDS card No. 41–1445).

Fig. S5 Raman spectrum of SnO_2 nanowires showing three well-resolved peaks. Note that the peak at 579 nm related to the facet surface area of a crystal arises from nanoscale SnO_2 with small grain sizes.¹

1 B. Cheng, J. M. Russell, W. Shi, L. Zhang and E. T. Samulski, J. Am. Chem. Soc., 2004, 126, 5972.

Fig. S6 TGA curve of SnO₂ nanowires showing 10.6 wt% organic content.

Fig. S7 Raman spectrum of SnO_2/MnO_2 1/2D hybrid architecture. The circles and diamonds indicate the characteristic peaks of SnO_2 nanowires and MnO_2 nanosheets, respectively, with a certain degree of superposition (550–650 cm⁻¹) due to their very close peak positions.

Fig. S8 (a) Mn 2p and (b) Sn 3d XPS spectra of SnO_2/MnO_2 1/2D hybrid architecture. In the binding energy range of 660–635 eV, the two peaks at 652.8 and 641.3 eV are assigned to Mn $2p_{1/2}$ and $2p_{3/2}$ orbitals, indicating the Mn(IV) state in the SnO_2/MnO_2 1/2D hybrid architecture without any alterations.¹ As to the XPS spectrum of SnO_2 in the energy range of 500–480 eV, the two peaks at 695.0 and 486.5 eV correspond to Sn $3d_{3/2}$ and $3d_{5/2}$ orbitals, demonstrating that the Sn atoms are in the form of SnO_2 .^{2–5}

- 1 A. K. Sinha, M. Pradhan and T. Pal, J. Phys. Chem. C, 2013, 117, 23976.
- 2 B. Zhang, Q. B. Zheng, Z. D. Huang, S. W. Oh and J. K. Kim, *Carbon*, 2011, 49, 4524.
- 3 C. Tan, J. Cao, A. M. Khattak, F. Cai, B. Jiang, G. Yang and S. Hu, J. Power Sources, 2014, 270, 28.
- 4 X. Wang, X. Cao, L. Bourgeois, H. Guan, S. Chen, Y. Zhong, D.-M. Tang, H. Li, T. Zhai, L. Li, Y. Bando and D. Golberg, *Adv. Funct. Mater.*, 2012, **22**, 2682.
- 5 L. Wang, D. Wang, Z. Dong, F. Zhang and J. Jin, *Nano Lett.*, 2013, **13**, 1711.

Fig. S9 SEM image of SnO₂/MnO₂ 1/2D hybrid architecture and the corresponding EDS maps showing a homogeneous distribution of Mn, Sn and O elements.

	Mn (wt%)	Sn (wt%)	MnO ₂ (wt%)	SnO ₂ (wt%)
Actual ratio	27.07	1.34	60.78	39.22
Starting ratio	-	-	60	40

Table S1 – Elemental composition of SnO₂/MnO₂ 1/2D hybrid architecture.

^{a)}Note that SnO_2 nanowires cannot be completely dissolved in concentrated H_2SO_4 at ambient temperature, so their accurate composition is calculated by subtracting that of MnO_2 nanosheets from 100 wt%. Quantitatively, the content of MnO_2 nanosheets is calculated by considering the organic and crystal water contents, and is 60.78 wt%. Therefore, the content of SnO_2 nanowires is 39.22 wt%. These values agree well with their starting ratio which again confirm a quite high self-assembly efficiency.

Fig. S11 TEM images of SnO_2/MnO_2 1/2D hybrid architecture after 200 charging–discharging cycles at a current density of 200 mA g⁻¹. It can be seen that after repeated lithation/delithation, the SnO_2/MnO_2 1/2D hybrid architecture still preserves its original morphology without stacking or collapsing.

Fig. S12 Nyquist plots of SnO_2/MnO_2 1/2D hybrid architecture as well as neat MnO_2 nanosheets and SnO_2 nanowires from 100 kHz to 0.01 Hz. The diameter of the semicircle for the SnO_2 nanowires, corresponding to the charge transfer resistance (R_{ct}), is much smaller than that of the MnO_2 nanosheets, demonstrating the higher conductivity of the former.