Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Dye-sensitized solar cells containing mesoporous TiO₂ spheres as photoanode and methyl sulfate anion based bi-ionic liquid electrolytes

Jia-De Peng,^a Chuan-Pei Lee,^a D. Velayutham,^b V. Suryanarayanan,^{*b} and Kuo-Chuan Ho^{**a,c}

^aDepartment of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan ^bElectroorganic Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, India

^cInstitute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan

* To whom correspondence should be addressed: <u>kcho@ntu.edu.tw</u> (K. C. Ho)

S1.	SEM image of CSL particles	Page S2
S2.	Diffuse reflection spectra of the films of CSL and MS	Page S3
S3.	The photovoltaic properties and electrochemical impedance behavior of	Page S4 to S9
	DSSCs with different ratios of PMII/TEMAMS or PMII/EMIBF ₄ based ILs	

S1. SEM image of CSL particles

Figure S1. SEM image of commercial scattering layer (CSL) particles.

S2. Diffuse reflection spectra of the films of CSL and MS

Figure S2. Diffuse reflection spectra of the films of commercial scattering layer (CSL) and mesoporous TiO_2 spheres (MS) at *ca*. 6 µm thickness.

S3. The photovoltaic properties and electrochemical impedance behavior of DSSCs with different ratios of PMII/TEMAMS or PMII/EMIBF₄ based ILs

Figure S3 shows the photocurrent density-voltage curves of DSSCs fabricated with the bi-IL electrolyte consisting of 0.2 M iodine, 0.4 M NMBI, 0.15 M GuSCN with various volume ratios of PMII/TEMAMS under 100 mW/cm² illumination. The optimal volume ratio of PMII/TEMAMS (65:35 = v/v) effectively enhances the cell efficiency from 3.21 to 6.18%, as listed in Table S1. Furthermore, ionic conductivity of the PMII/TEMAMS bi-IL electrolyte initially increases as the TEMAMS content increases, reaching a maximum conductivity of 15.36×10^{-3} S/cm at the optimal volume ratio of PMII/TEMAMS (65:35 = v/v), and then decreases when the ratio increases. The EIS technique is also used, as shown in Figure S4, to realize the effect of various volume ratios of PMII/TEMAMS on the properties of bi-IL electrolyte. Surprisingly, the EIS spectra show that Rct2 decreases from 42.62 to 21.93 Ω , when the optimal volume ratio of PMII/TEMAMS is incorporated into the bi-IL electrolyte. Moreover, the diffusion coefficient of I_3^- in the electrolyte (D(I_3^-)), calculated from the EIS spectra, increases from 0.63×10^{-6} to 1.73×10^{-6} cm²/s in the presence of the optimal volume ratio of PMII/TEMAMS in the bi-IL electrolyte. However, excess of TEMAMS does not provide this beneficial effect as evidenced by the cell performance displays in Figure S3. The photocurrent density-voltage curves of DSSCs and the EIS spectra based on various volume ratios of PMII/EMIBF₄ bi–IL electrolyte are also shown in Figure S5 and S6, and the related experimental data are listed in Table S2.

Figure S3. Photovoltaic properties of DSSCs with different ratios of PMII/TEMAMS based ILs, measured under 100 mW/cm². The DSSCs are composed of photoanodes containing commercial transparent layer (CTL) and mesoporousTiO₂ spheres (MS) at *ca*. 15 μ m thickness.

Figure S4. Nyquist plots of DSSCs with different ratios of PMII/TEMAMS based ILs (cell gap: 60 μ m).

Figure S5. Photovoltaic properties of DSSCs with different ratios of PMII/EMIBF₄ based ILs, measured under 100 mW/cm². The DSSCs are composed of photoanodes containing commercial transparent layer (CTL) and mesoporousTiO₂ spheres (MS) at *ca*. 15 μ m thickness.

Figure S6. Nyquist plots of DSSCs with different ratios of PMII/EMIBF₄ based ILs (cell gap: 60 μ m).

Table S1. Photovoltaic parameters of DSSCs, calculated by the average of 5 cells, with different ratios of PMII/TEMAMS based ILs, measured under 100 mW/cm². The table also shows the corresponding values of the conductivity and diffusion coefficient of I_3^- in the electrolyte ($D(I_3^-)$). The DSSCs are composed of photoanodes containing commercial transparent layer (CTL) and mesoporousTiO₂ spheres (MS) at *ca*. 15 µm thickness.

PMII (vol%)	Conductivity (×10 ⁻³ S/cm)	J _{SC} (mA/cm ²)	V _{OC} (mV)	FF	η (%)	$D(I_3^-)$ (×10 ⁻⁶ cm ² /s)
100	6.19 ± 0.15	7.19 ± 0.14	659 ± 5	0.68 ± 0.002	3.21 ± 0.03	0.63 ± 0.1
80	12.28 ± 0.19	9.97 ± 0.13	663 ± 3	0.68 ± 0.003	4.48 ± 0.04	0.90 ± 0.1
70	13.96 ± 0.17	11.77 ± 0.13	665 ± 3	0.68 ± 0.002	5.32 ± 0.03	1.36 ± 0.2
65	15.36 ± 0.17	13.56 ± 0.18	669 ± 5	0.68 ± 0.003	6.18 ± 0.03	1.73 ± 0.2
60	14.12 ± 0.18	12.52 ± 0.16	667 ± 4	0.68 ± 0.003	5.69 ± 0.04	1.49 ± 0.2
50	13.12 ± 0.16	11.16 ± 0.15	663 ± 5	0.68 ± 0.003	5.01 ± 0.03	1.12 ± 0.1

Table S2. Photovoltaic parameters of DSSCs, calculated by the average of 5 cells, with different ratios of PMII/EMIBF₄ based ILs, measured under 100 mW/cm². The table also shows the corresponding values of the conductivity and diffusion coefficient of I_3^- in the electrolyte ($D(I_3^-)$). The DSSCs are composed of photoanodes containing commercial transparent layer (CTL) and mesoporousTiO₂ spheres (MS) at *ca*. 15 µm thickness.

PMII (vol%)	Conductivity (×10 ⁻³ S/cm)	$J_{\rm SC}$ (mA/cm ²)	V _{OC} (mV)	FF	η (%)	$D(I_3^-)$ (×10 ⁻⁶ cm ² /s)
100	6.19 ± 0.15	7.19 ± 0.14	659 ± 5	0.68 ± 0.002	3.21 ± 0.03	0.63 ± 0.1
80	11.23 ± 0.12	9.74 ± 0.13	643 ± 4	0.65 ± 0.003	4.08 ± 0.04	0.79 ± 0.1
70	11.92 ± 0.16	10.28 ± 0.11	633 ± 3	0.65 ± 0.004	4.23 ± 0.04	0.86 ± 0.1
65	12.36 ± 0.16	11.61 ± 0.10	627 ± 5	0.62 ± 0.002	4.53 ± 0.03	0.93 ± 0.1
60	11.56 ± 0.16	10.83 ± 0.12	621 ± 4	0.62 ± 0.003	4.16 ± 0.05	0.82 ± 0.1
50	10.65 ± 0.12	10.25 ± 0.12	619 ± 3	0.62 ± 0.003	3.93 ± 0.03	0.73 ± 0.1