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Figure S1. EDS spectra of (a) K-6-MnO, (KMO), (b) K, Na-6-MnO, (KNMO), and

(c) Na-6-MnO, (NMO).

120

p—
o
S

A N X
oS O
T T

Weight (%)

[\
S

0

0 100 200 300 400 500 600 700
Tempeture (°C)

Figure S2. The TG curve of NMO from room temperature to 700 °C at a rate of

10°C min! in a flowing air.
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Figure S3. HRTEM, TEM images of (a) KNMO, (b) NMO.
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Figure S4. Survey XPS spectra for pristine samples.
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Figure S5. (a) CV curves of KNMO at different scan rates from 1 to 20 mV s7!; (b)
the linear dependence of i/v'? on v!2 (i: current; v: scan rate); (¢) CV curve of KNMO

at a scan rate of 1 mV s! and the estimated capacitive contribution (shaded region).

The layered 6-MnQO, was investigated as supercapacitor electrode. The capacitive
contribution was evaluated by using KNMO as SIB electrode. Figure S5a shows the
CV curves of KNMO at different scan rates from 1 to 20 mV s~!. At a fixed potential,
the overall current response is assumed to contain two contributions: surface

capacitive effect and diffusion controlled insertion process, which is calculated as

below ! 2;

iV)=ky+ky" (1-1)

It can be written as

i)V =kv'" +k, (1-2)
where kv is the current contribution from surface capacitive effect, and k,v!/? is from
the diffusion controlled insertion process. As shown in Figure S5b and equation (1-2),

the linear dependence of i/v'? on the scan rate of v'? is used to determine the slope (k)

and the intercept (k;) at each fixed potential. This means that the capacitive effect can
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be estimated at a certain voltage. Figure S5c¢ clearly demonstrates the estimated
capacitive contribution in the shaded region at a scan rate of 1 mV s~!. On the basis of

the enclosed area, the capactive charge storage accounts for 49% of the overall charge

storage.
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Figure S6. (a) XRD pattern, (b) EDS spectrum, and (¢) FE-SEM image of
NaTiy(POy)s.

As shown in Figure S6a, the XRD pattern reveals that it is well-defined
NASICON structure (JCPDS 85-2265). The EDS result proves the coexistence of Na,
Ti, P and O elements in the sample (Figure S6b). FE-SEM observation reflects that

the NaTi,(PO,); sample is consisted with a large number of aggregated particles.
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Figure S7. (a) XPS spectra for the three electrodes after charge/discharge cycle.
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Figure S8. XPS spectra for etched electrode: high-resolution spectra of (a) K 2p, (b)

Mn 2p and (c) O Is.
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