Supporting Information for

Sodiation vs. Lithiation Phase Transformations in a High Rate - High Stability SnO₂ in Carbon Nanocomposite

Jia Ding^{a*}, Zhi Li^a, Huanlei Wang^a, Kai Cui^b, Alireza Kohandehghan^a, Xuehai Tan^a, Dimitre Karpuzov^c, David Mitlin^{d, a*}

^aChemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G

2V4, Canada

^bNational Institute for Nanotechnology (NINT), National Research Council of Canada,

Edmonton, Alberta T6G 2M9, Canada

^c Alberta Center for Surface Engineering and Science (ACSES), University of Alberta,

Edmonton, AB, Canada T6G 2G6

^d Chemical & Biomolecular Engineering and Mechanical Engineering, Clarkson

University, Potsdam, NY, USA 13699

*Address correspondence to dingjiasiom@gmail.com (J. Ding); dmitlin@clarkson.edu (D. Mitlin).

Figure S1: (A) Thermogravimetric curves of C-SnO₂ and SnO₂ specimens. (B) XPS survey spectrum of C-SnO₂ and high resolution spectrum of Sn 3d level (insert).

Figure S2: (A) Conventional TEM micrograph of the baseline SnO₂ specimen. (B) HRTEM micrograph of two overlapping SnO₂ particles.

Figure S3: Electrochemical performance of SnO₂ *vs*. Li. (A) CVs of SnO₂, tested at 0.1 mVs⁻¹. (B) Galvanostatic discharge/charge profiles of SnO₂, tested at 0.5Ag⁻¹.

Figure S4: Derivate curves dQ/dV vs. V for C-SnO₂ electrode against Li.

Figure S5: Electrochemical performance of pure carbon in a half-cell *vs.* Na, Li. (A) CVs of pure carbon electrode for the cycle 1 - 10 vs. Na, tested at 0.1 mVs^{-1} . (C) Galvanostatic discharge/charge profiles of pure carbon electrode, tested at 0.08 Ag^{-1} . (B) CVs of pure carbon electrode for the cycle 1 - 10 vs. Li, tested at 0.1 mVs^{-1} . (D) Galvanostatic discharge/charge profiles of pure carbon electrode, tested at $0.5 \text{ Ag}^{-1} vs.$ Li.

Figure S6: (A) Rate performance of the baseline pure amorphous carbon electrodes *vs*. Na and *vs*. Li, tested 0.01-3V. (B) Cycling performance of pure carbon electrodes, tested 0.01-3V. (C) Rate performance of the baseline pure amorphous carbon electrodes *vs*. Na and *vs*. Li, tested 0.01-1.5V. (D) Cycling performance of pure carbon electrodes, tested 0.01-1.5V.

Figure S7: XRD pattern for the plastic tape on the stainless steel current collector.

Figure S8: XPS spectra for C 1s (left) and O 1s (right) of C-SnO₂ electrodes at the same cut-off voltages.

(A) and Na (B) between 0.01 and 1.5V tested at current density of 80mAg⁻¹.

Figure S10: Electrochemical performance of SnO_2 versus Na. (A) Cyclic voltammograms (CVs) of SnO_2 electrode. (B) Galvanostatic discharge/charge profiles of SnO_2 electrode at current density of $0.08Ag^{-1}$.

Figure S11: (A-C) TEM micrographs of $C-SnO_2$ with corresponding histograms for the size of the active SnO_2 nanocrystal assemblies (not individual crystallites). (A) Open circuit potential. (B) Sodiated to 0.01V. (C) Desodiated to 3V.

Figure S12: (A) XRD patterns of SnO_2 electrodes at various cut-off voltages: first sodiation to 0.5V, first sodiation to 0.01 V, first desodiation to 1.5V, first desodiation to 3V.

Figure S13: XPS spectra for C 1s (left panel) and O 1s (right panel) levels of C-SnO₂ electrodes at various cut-off voltages (open circuit voltage, first sodiated to 0.01 V, first desodiated to 1.5V, first desodiated to 3V *vs.* Na/Na⁺.