Supporting Information

Mesoporous CuCo₂O₄ nanograss as multi-functional electrodes for supercapacitors and electro-catalysts

Jinbing Cheng^{†*a,b*}, Hailong Yan^{†*a,b*}, Yang Lu^{†*a,b,c*}, Kangwen Qiu^{†*a,b*}, Xiaoyi Hou^{*a,b*}, Jinyou Xu^{*a,b*}, Lei Han^{*a*}, Xianming Liu^{*d*}, Jang-Kyo Kim^{*e*} and Yongsong Luo^{**a,b*}

^aSchool of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.

^bKey Laboratory of Advanced Micro/Nano Functional Materials, Xinyang Normal University, Xinyang 464000, P. R. China.

^cSchool of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.

^dCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, P. R. China.

^eDepartment of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.

^{*} To whom correspondence should be addressed: E-mail: <u>ysluo@xynu.edu.cn</u>

[†] These authors contribute equally to this work.

Fig. S1 Raman spectra of CuCo₂O₄ nanograss.

Fig. S2 (a) XPS spectra of $CuCo_2O_4$ nanograss; and (b-d) XPS deconvoluted scans of Cu 2p, Co 2p and O 1s, respectively.

Fig. S3 Nitrogen adsorption/desorption isotherms measured at 77 K of $CuCo_2O_4$ nanograss, and the corresponding Barrett-Joyner-Halenda (BJH) poresize distribution curve (inset).

Fig. S4 CV curves for $CuCo_2O_4$ and neat Cu foam electrodes, recorded at a scan of 30 mV s⁻¹.

Fig. S5 Specific capacitances and capacities of the $CuCo_2O_4$ electrode at different current densities.

Cycles	$\mathbf{R}_{ct}(\Omega)$	$\mathbf{R}_{\mathbf{s}}(\Omega)$
1 st	3.34	1.86
5000 th	3.85	1.95