Supplementary Information

Porous TiNb₂O₇ Nanofibers decorated with conducting Ti_{1-x}Nb_xN bumps as a

High Power Anode Material for High Power Li-ion Batteries

Hyunjung Park¹, Taeseup Song², and Ungyu Paik¹*

¹WCU Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea.

E-mail: upaik@hanyang.ac.kr

²School of Materials Science and Engineering, Yeungnam University, Gyeongsan 721-749, Korea

Fig. S1 X-ray powder diffraction peak patterns of (a) PTNO NFs calcined at 700 °C in air, (b) PTNON NFs ammonia gas treated at 600 °C for 10 min and (c) PTNON NFs ammonia gas treated at 700 °C in for 10 min.

Fig. S2 X-ray powder diffraction peak patterns of TNO NFs-2 after ammonia gas treatment at 700 °C for (a) 10 min (TNON NFs-2), (b) 30 min (TNON NFs-3), and (c) 60 min (TNON NFs-4), respectively.

Fig. S3 Transmission electron-microscopic (TEM) images of (a) TNO NFs calcined at 700 °C in air (TNO NFs-2), (b) TNO NFs-2 after ammonia gas treatment at 700 °C for 10 min (TNON NFs-2), and (c) 30 min (TNON NFs-3).

Fig. S4 X-ray photoelectron spectroscopy spectra of (a) O 1s, (b) N 1s, (c) Ti 2p, and (d) Nb 3d orbital of TNO NFs-2, TNON NFs-1, and TNON NFs-2.

Fig. S5 Capacity retention of TNO NFs-2 and TNON NFs-2 electrodes at various C rates.