## Nanoflower-like Weak Crystallization Manganese Oxide for

## **Efficient Removal of Low-concentration NO at Room**

## Temperature

Figure S1. Typical SEM images of WMO (a) and  $\alpha$ -MnO<sub>2</sub> (b) under different reaction



temperatures.

Figure S2. N<sub>2</sub> adsorption-desorption isotherms of WMO.



Figure S3. XPS spectrum of the (a) Mn 2p of WMO,  $MnO_2$ ,  $Mn_2O_3$  and MnO, (b) O 1s of WMO before and after NO removal test.  $MnO_2$  was purchased from Adamas Reagent, Ltd.  $Mn_2O_3$  was obtained by calcined WMO under 600 °C for 6h. Under H<sub>2</sub> circumstance, through the calcination of  $MnCO_3$  under 600 °C for 10 h can get MnO.



(b)



Figure S4. TG-DTA-MS (H<sub>2</sub>O, 18) curves of WMO.



Figure S5. FT-IR spectra of (a) fresh, (b) after dry inlet test, and (c) after moisture inlet test WMO.



**Figure S6.** NO removal test for  $\alpha$ -MnO<sub>2</sub>. Reaction conditions: [NO] = 10 ppm, [O<sub>2</sub>] =



21%, balance = N<sub>2</sub>, temperature = 25 °C, and GHSV = 40,000  $h^{-1}$ .

**Figure S7**. Structural evolution corresponding to these reaction paths on clean (A), Mn-vacancy (B), hydrated surfaces (C). In these Figures, v-, w-, ads- and desrepresent Mn-vacancy surface, hydrated surface, adsorbed intermediate, and desorbed intermediate, respectively. Different kinds of elements are represented by different colors in that: Manganese (purple), Oxygen (red), Nitrogen (blue), Hydrogen (white).



**Figure S8.** NO removal test for WMO. Reaction conditions: [NO] = 10 ppm,  $[O_2] = 0$ , balance = N<sub>2</sub>, temperature = 25 °C, and GHSV = 40,000 h<sup>-1</sup>.





Figure S9. Digital photos of a honeycomb ceramic before (a) and after (b) coated with WMO.

| Mn oxides            | WMO   | MnO <sub>2</sub> | Mn <sub>2</sub> O <sub>3</sub> | MnO   |
|----------------------|-------|------------------|--------------------------------|-------|
| Mn 2p <sub>1/2</sub> | 654.0 | 653.8            | 653.6                          | 653.2 |
| Mn 2p <sub>3/2</sub> | 642.4 | 642.2            | 642.1                          | 641.6 |

 Table S1. XPS results of the Mn 2p of different Mn oxides.