Electronic Supplementary Information (ESI) †

Ion exchange mediated shape-preserving strategy for architecting 1-D arrays of porous $CoS_{1.0365}$ nanorods for electrocatalytic reduction of triiodide

Supriya A. Patil,^a Dipak V. Shinde, ^a Iseul lim, ^a Keumnam Cho,^a Sambhaji S.Bhande,^b Rajaram S. Mane,^b Nabeen K. Shrestha, ^{a*} Joong Kee Lee,^c Tae Hyun Yoon, ^a Sung-Hwan Han, ^{a*}

^aDepartment of Chemistry, Hanyang University, Sungdong-gu, Haengdang-dong 17, Seoul 133-791, Republic of Korea.

^bCenter for Nanomaterials and Energy Devices, School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 4316006, India.

^cEnergy Storage Research Centre, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea.

^{*}E-mail; nabeenkshrestha@hotmail.com; shhan@hanyang.kr.ac

Fig. S1. Co 2p and O 1s core level XPS spectra of various shaped Co₃O₄ nanorod films: (a) Nb, (b) BNr, and (c) Nn.

Fig. S2. SEM top views of Co_3O_4 nanorod film before (a), and after ion exchange reaction for (b) 3 h, (c) 6 h, (d) 9 h, (e) 12 h, (f) 24 h, and (g) 36 h. Images (h) ~ (n) correspond to low magnified SEM views shown on left column.

Fig. S3. XRD pattern for 1-D of Co_3O_4 Nb array and time dependent ion exchange for Nb- $CoS_{1.0356}$.

Fig. S4. TEM images of nanorods scarped from film of (a) Co_3O_4 , and (b) 24 hr- $CoS_{1.0365}$ nanorods.

- - - - -	a a				Map Sum	Spectrum	20- 5					Map Sum Spectrum		
a)												b)		
Element	Line	k factor	Absorption Correction	Wt%	Wt% Sigma	Atomic	Element	Line Type	k factor	Absorption Correction	Wt%	Wt% Sigma	Atomic %	
	Type		correction		5181114	70						-		
0	K series	2.13263	1.00	28.67	0.19	59.69	S	K series	1.04702	1.00	43.30	0.12	58.39	
Со	K series	1.05191	1.00	71.33	0.19	40.31	Со	K series	1.05191	1.00	56.70	0.12	41.61	
Total:				100.00		100.00	Total:				100.00		100.00	

Fig. S5. Energy-dispersive X-ray spectroscopy analysis of (a) Co_3O_4 Nb, and (b) 24 hr-CoS_{1.0365} Nb film powder scarped from FTO glass substrate for analysis.

Fig. S6 Line scanning TEM- EDS analysis of the one week aged 24 hr- $CoS_{1.0365}$ nanorod in dark at normal temperature and pressure of laboratory, showing distribution profile of various elements.

Fig. S7. XPS spectra of 24 hr-CoS $_{1.0365}$ in the region of (a) Co 2p, and (b) S 2p.