Supporting information

Hydrated vanadium pentoxide xerogel with superior sodium

storage capacity

Qiulong Wei,[‡]^a Jin Liu,[‡]^a Wei Feng,[‡]^a Jinzhi Sheng,^a Xiaocong Tian,^a Liang He,^{*a} Qinyou An^b and Liqiang Mai^{*a}

 ^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan 430070, China E-mail:mlq518@whut.edu.cn; hel@whut.edu.cn Fax: +86-27-87644867; Tel: +86-27-87467595
^b Cullen College of Engineering, Department of Electrical & Computer Engineering, University of Houston, Houston, USA

Fig. S1 XRD pattern (a) and SEM images (b,c) of the orthorhombic V₂O₅. Inset of b is the optical image of as-synthesized α -V₂O₅ powders. (JCPDS No. 00-041-1426, space group: Pmmn, a = 11.5160 Å, b = 3.5656 Å, c = 4.3727 Å).

Fig. S2 (a) The discharge-charge curves of the α -V₂O₅ cathode in SIB test. The 1st discharge curve displays two plateaus. However, the 2nd discharge curve display one main plateau, which indicating the irreversible phase transition occurs during the first cycle, which resulting the large capacity fading. (b) The ex-situ XRD patterns of α -V₂O₅ cathode at various charge/discharge states. (NaV₂O₅, JCPDS No. 01-070-0870, space group: P21mn, a = 11.3180 Å, b = 3.6110 Å, c = 4.7970 Å, α = β = γ = 90.0°). The phase transition from the α -V₂O₅ phase to NaV₂O₅ phase is irreversible, which could not be recovered to the α -V₂O₅ phase after charging back to 4.0 V, indicating the phase changes of α -V₂O₅ layer structure are irreversible after the Na⁺ ions inserting.

Fig. S3 Coulombic efficiency *vs* cycle number of the $V_2O_5 \cdot nH_2O$ and α - V_2O_5 cathodes in SIB test.

Fig. S4 LIB performance of the $V_2O_5 \cdot nH_2O$ cathode. CV curves (a) and dischargecharge curves at current density of 0.1 A/g (b). Cycling performance at the current density of 0.5 A/g (c) and the rate performance (d).

Fig. S5 LIB rate performance of the α -V₂O₅ cathode.

Fig. S6 Cyclic voltammetric responses $V_2O_5 \cdot nH_2O$ at scan rate of 0.2 (a), 0.4 (b), 0.6 (c), 0.8 (d) and 1.0 mV/s (e), respectively. The diffusion contribution to the current is represented as the shaded area.

Fig. S7 CV curves (a) and corresponding capacity contribution (b) of the total stored charge at various scan rates for LIB test.

Fig. S8 *Ex-situ* XRD pattern (a), related d_{001} value changes (b) and FTIR spectra (c) of the cathodes in LIB test collected at various charge/discharge states: (i) before cycle, (ii) discharged to 2.4 V, (iii) discharged to 2.0 V, (iv) discharged to 1.5 V, (v) re-charged to 2.0 V, (vi) re-charged to 2.4 V and (vii) re-charged to 4.0 V.

Table S1. A	survey	of	electrochemical	properties	of	vanadium	oxides	and	their
composites for	or SIBs.								

1					
Electrode	Potential	Specific capacity	High rate		
description (%)	range (V)	(mAh/g)	capacity		
$V_2O_5 \cdot nH_2O$ xerogels [this	1040	338 mAh/g at 50	96 mAh/g		
work]	1.0-4.0	mA/g	at 1000 mA/g		
hilawarad V.O. nanahalta [1]	1040	231.4 mAh/g at 80	134 mAh/g		
bilayered v_2O_5 hanobelts [1]	1.0-4.0	mA/g	at 640 mA/g		
V ₂ O ₅ nanoparticles generated in	1520	170 mAh/g at 40	90 mAh/g		
nanoporous carbon[2]	1.5-5.8	mA/g	at 640 mA/g		
nanostructured bilayered	1520	250 mAh/g at 20			
vanadium oxide [3]	1.3-3.8	mA/g			
amamhaya yanadiym ayida [4]	1520	241 mAh/g at 23.4	~80 mAh/g		
amorphous vanadium oxide [4]	1.3-3.8	mA/g	at 1170 mA/g		
hierarchical orthorhombic V2O5	1042	230.0 mAh/g at 20	~90 mAh/g		
hollow nanospheres [5]	1.0-4.2	mA/g	at 1280 mA/g		
	1524	225.7 mAh/g at 20	159.8 mAh/g		
V_6O_{13} microflowers [6]	1.5-5.4	mA/g	at 160 mA/g		
VO nanashaata [7]	154	220 mAh/g at 50	~80 mAh/g		
vO_2 nanosheets [7]	1.3-4	mA/g	at 1000 mA/g		

References

[1] D. Su and G. Wang, ACS Nano, 2013, 7, 11218.

[2] V. Raju, J. Rains, C. Gates, W. Luo, X. Wang, W. F. Stickle, G. D. Stucky and X. Ji, *Nano Lett.*, 2014, 14, 4119.

[3] S. Tepavcevic, H. Xiong, V. R. Stamenkovic, X. Zuo, M. Balasubramanian, V. B. Prakapenka, C. S. Johnson and T. Rajh, *ACS Nano*, 2011, 6, 530.

[4] E. Uchaker, Y.-Z. Zheng, S. Li, S. L. Candelaria, S. Hu and G. Cao, J. Mater. Chem. A, 2014, 2, 18208.

- [5] D. Su, S. X. Dou and G. Wang, J. Mater. Chem. A, 2014, 2, 11185.
- [6] H. Fei, Y. Lin and M. Wei, J. Colloid Interf. Sci., 2014, 425, 1.
- [7] W. Wang, B. Jiang, L. Hu, Z. Lin, J. Hou and S. Jiao, *J. Power Sources*, 2014, 250, 181.