Supplementary Information:

Nitrogen-Self-doped carbon with porous graphene-like structures as a highly

efficient catalyst for oxygen reduction

Jian Zhang,^a Qidong Li,^b Hui Wu,^a Chenyu Zhang,^a Kun Cheng,^a Huang Zhou,^a Mu

Pan^a and Shichun Mu*^a

^aState Key Laboratory of Advanced Technology for Materials Synthesis and

Processing, Wuhan University of Technology, Wuhan 430070, China

Fax: +86 27 87879468. E-mail: msc@whut.edu.cn.

^bWUT-Harvard Joint Nano Key Laboratory, Wuhan University of Technology,

Wuhan 430070, China.

Contents

Figure S1 FESEM images of the sample without Fe (PA-U).

Figure S2 Crumpled and entangled graphene-like structure of Fe-PA-U at different magnifications of HRTEM images.

Figure S3 Raman spectra of Fe-PA and Fe-PA-U catalysts.

Figure S4 The full width at half maximum of C1s spectra of Fe-PA and Fe-PA-U.

Figure S5 N1s fitted results of Fe-PA and Fe-PA-U.

Table S1 The content of C, N, O, Fe and different types of N contents of Fe-PA and Fe-PA-U catalysts.

Figure S6 The electrochemical impedance spectroscopy of Fe-PA and Fe-PA-U catalysts under open circuit potential at frequency ranges of 100 kHz to 1 Hz.

Figure S7 The equivalent circuit.

Table S2 Comparison of ORR activity of the literature reports.

The Koutecky-Levich (K-L) equation.

Figure S8 ORR polarization curves for Fe-PA (a) and Fe-PA-U (b) at different rotating rates in O_2 -saturated 0.1 M KOH solution with scanning rates of 5 mV s⁻¹, inset: K-L plots.

Figure S9 LSV curves for PA-U, Fe-PA and Fe-PA-U catalysts.

Figure S10 Comparative LSV curves for Fe-PA-U and the sample of Fe-PA-U was treated with aqua regia.

Figure S1

Figure S3

Figure S4

Table	S1
-------	-----------

Sample	Content (%)				 Content of N species (%)			
	С	Ν	0	Fe	Oxidized	Graphitic	Pyrrolic	Pyridinic
Fe-PVP	83.06	3.08	13.6	0.26	0.320	1.08	0.445	1.24
Fe-PVP-U	84.54	5.63	9.40	0.43	0.516	1.87	0.983	2.26

Figure S6

Figure S7

The equivalent circuit, where R_{el} is solution resistance, R_{ct} is charge transfer resistance, W is Warburg element, Q_{dl} is double layer capacitance, R_f is film resistance, C_f is film capacitance.

Catalyst	Template	E _{onset} (V) /	E _{1/2} (V) /	Reference	Medium	Ref.
		relative to	relative to	electrode		
		Pt/C	Pt/C			
Fe-PA-U	-	-0.08 V /	-0.24 V /	SCE	0.1 M KOH	this
		-50 mV	-100 mV		at 1600 rpm	work
P-Z8-Te-1	silica	0.93 V /	0.85 V /	RHE	0.1 M KOH	1
000	colloid	-20 mV	0 mV		at 1600 rpm	
N-Fe-MO	MOF	1.02 V /	0.88 V /	RHE	0.1 M KOH	2
F		0 mV	ca. +10 mV		at 1600 rpm	
N-doped	MOF	0.99 V /	0.92 V /	RHE	0.1 M KOH	3
Fe/Fe3C@ C/RGO		ca. 0 mV	ca10 mV		at 1600 rpm	
Carbon-S	ZIF-7	0.844 V /	0.678 V /	RHE	0.1 M KOH	4
		-80 mV	ca110 mV		at 1600 rpm	
SN/C-900	Nano silica	0.03 V /	-0.25 V /	Ag/AgCl	0.1 M KOH	5
	spheres	-10 mV	ca50 mV		at 1600 rpm	
NPS-C-M	MOF	-0.006 V /	-0.24 V /	Ag/AgCl	0.1 M KOH	6

OF-5		-36 mV	ca50 mV		at 1600 rpm	
NC900	ZIF-8	0.83 V /	-	RHE	0.1 M KOH	7
		ca100			at 1600 rpm	
		mV				
PANI-4.5	SBA-15	0.95 V /	0.84 V /	RHE	0.1 M KOH	8
Fe-HT2(S		-40 mV	+10 mV		at 1600 rpm	
BA-15)						
N-PANn-1	AAO	-0.05 V /	-/	Ag/AgCl	0.1 M KOH	9
000		-20 mV	-		at 1600 rpm	
NS(3 : 1)-	MOF	-0.005 V /	_/_	Ag/AgCl	0.1 M KOH	10
C-MOF-5		-5 mV			at 1600 rpm	
ZIF-67-90	ZIF-67	0.94V /	_/_	RHE	0.1 M KOH	11
0-AL		-40 mV			at 1600 rpm	

 E_0 : onset potential, $E_{1/2}$: half-wave potential, MOF: metal–organic framework, ZIF: zeolitic imidazolate frameworks, SBA: ordered mesoporous silica, AAO: Anodic alumina oxide.

1. H. W. Liang, X. Zhuang, S. Bruller, X. Feng and K. Mullen, Nature communications, 2014, 5, 4973.

2. Q. Li, P. Xu, W. Gao, S. Ma, G. Zhang, R. Cao, J. Cho, H. L. Wang and G. Wu, Advanced materials, 2014, 26, 1378-1386.

3. Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui and J. Chen, Advanced Energy Materials, 2014, 4, 140037.

4. P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun and D. Cao, Energy & Environmental Science, 2014 MOF, 7, 442-450.

Y. Li, H. Zhang, Y. Wang, P. Liu, H. Yang, X. Yao, D. Wang, Z. Tang and H. Zhao, Energy & Environmental Science, 2014.

6. J. S. Li, S. L. Li, Y. J. Tang, K. Li, L. Zhou, N. Kong, Y. Q. Lan, J. C. Bao and Z.H. Dai, Scientific reports, 2014, 4, 5130.

 A. Aijaz, N. Fujiwara and Q. Xu, Journal of the American Chemical Society, 2014, 136, 6790-6793.

8. X.-H. Yan and B. Q. Xu, Journal of Materials Chemistry A, 2014, 2, 8617-8622.

X. She, D. Yang, D. Jing, F. Yuan, W. Yang, L. Guo and Y. Che, Nanoscale, 2014,
 6, 11057-11061.

J. Li, Y. Chen, Y. Tang, S. Li, H. Dong, K. Li, M. Han, Y.-Q. Lan, J. Bao and Z.
 Dai, Journal of Materials Chemistry A, 2014, 2, 6316-6319.

11. X. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng and X. Li, Journal of Materials Chemistry A, 2014, 2, 14064.

The Koutecky-Levich (K-L) equation

The K–L equation as given below:

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_K} = \frac{1}{B\omega^{1/2}} + \frac{1}{J_K}$$
(1)

$$B = 0.62 n F C_0 (D_0)^{2/3} v^{-1/6}$$
⁽²⁾

where J denotes the measured current density, J_K is the kinetic current density, J_L is the diffusion-limited current density, ω is the electrode rotation rate, F is the Faraday constant (96485 C mol⁻¹), C₀ is the bulk concentration of O₂ (1.2×10⁻³ mol L⁻¹), D₀ is the diffusion coefficient of O₂ (1.9 ×10⁻⁵ cm² s⁻¹) and v is the kinetic viscosity of the electrolyte (1.0×10⁻² cm² s⁻¹).

Figure S8

Figure S9

