Supplementary Information

High and Selective CO₂ adsorption by a phthalocyanine nanoporous polymer

Venkata S. Pavan K. Neti,^a Jun Wang,^b Shuguang Deng,^b and Luis Echegoyen^{*a}

^a Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, United States ^b Department of Chemical Engineering, New Mexico State University, Las Cruces, NM, United States

^a E-mail: echegoyen@utep.edu, Tel/Fax: +1 (915) 747-7573/(915) 747-8807

Contents

Langmuir model fits and Van't Hoff Plots

Langmuir model fits

Figure S1. Langmuir model fits for CO₂ (top), CH₄ (middle), and N₂ adsorption (bottom) of CPP at 273K.

Henry's constant by the product of Langmuir constants, that is K=a*b. K1 (273K) and K2 (298K), ln K vs 1/T (below). Van't Hoff equation is used to get Q_{st} at zero coverage.

Figure S2. Van't Hoff plots of isosteric heat of adsorption for CH₄ (top) and CO₂ (bottom).

Calculation of isosteric heat of adsorption

The adsorption enthalpy at zero coverage was calculated from Henry's constant using the Van't Hoff equation as

$$\ln K = -\frac{\Delta H}{RT} + \frac{\Delta S}{R}$$

K is the Henry's constant, T is the temperature, plotting *ln K* vs. 1000/T

Surface Area Measurements

Figure S3. Cumulative (left) pore size distribution plot of CPP from the application of the NLDFT model to the N_2 isotherm. BET plot (right) for CPP calculated from isotherm data.