Supporting information

Chrysanthemum-like TiO₂ nanostructures with exceptional reversible capacity and high coulombic efficiency for lithium storage

Lin Wang, Zhongyuan Nie, Chuanbao Cao*, Youqi Zhu, Xiao Feng and Syed Khalid Research Center of Materials Science, Beijing Institute of Technology, Beijing 100081, China, E-mail: cbcao@bit.edu.cn

Fig. S1 FE-SEM images of CLNR-TiO₂ in a larger scale of nanostructures after annealing.

Fig. S2 FE-SEM images of the product prepared from solvothermal at 180 $^{\circ}$ C for 24 h: (a) only the use of IPA (isopropanol); (c) only the use of glycerol. (b) and (d) are the corresponding product of (a) and (c) after calcination at 450 $^{\circ}$ C for 10 h, respectively.

Fig. S3 FE-SEM images showing the morphological evolution of the obtained precursors of the CLNR-TiO₂ nanostructures prepared from different solvothermal reaction time: (a) 1 h; (b) 4 h; (c) 6 h; (d) 24 h.

Fig. S4 Schematic illustration of growth mechanism of the hierarchical TiO_2 naostructures: time factor and solvent factor.

Fig. S5 (a) XRD patterns of the three TiO_2 samples. Vertical bars indicate peak position and intensity of anatase TiO_2 (JCPDS No. 73-1764). XPS spectra of the three TiO_2 samples: (b) wide-scan spectra of the three TiO_2 samples; (c) high-resolution XPS of Ti 2p peaks of the three TiO_2 samples; (d) high-resolution XPS of O 1s peaks of the three TiO_2 samples.

Fig. S6 Charge-discharge profiles at a current rate of 0.59 C (100 mA g^{-1}) between 1.0 and 3.0 V for the first, second, and third cycles of different TiO₂ electrode materials: (a) CLNR-TiO₂; (b) FLNP-TiO₂; (c) Microsphere-TiO₂,

Fig. S7 Cycling performance of the commercial P25 electrode at a current rate of 2 C (1 C = 170 mA g^{-1}) between 1.0 and 3.0 V.

Fig. S8 Cycling performance at a current rate of 10 C (1 C = 170 mA g^{-1}) between 1.0 and 3.0 V of CLNR-TiO₂. The coulombic efficiency is plotted on the right axis (olive circles).

Table 51. Surface analysis dat	1. Surface analysis dat	ta
--------------------------------	-------------------------	----

Sample	Specific surface area (m ²	Average pore size	Pore volume(cm ³ g ⁻¹)
	g ⁻¹) ^a	(nm) ^b	
CLNR-TiO ₂	95.19	7.66	0.27
FLNP-TiO ₂	56.25	7.45	0.15
Microsphere-TiO ₂	23.82	9.16	0.049

a Specific surface area was calculated from the linear part of BET plot. b Average pore diameter was estimated from the Barrett–Joyner–Halenda formula.

Sample	anodic peak	cathodic peak	ΔE_p
CLNR-TiO ₂	2.00	1.72	0.28
FLNP-TiO ₂	2.02	1.72	0.3
Microsphere-TiO ₂	2.02	1.67	0.35

Table S2. Summary of the CVs of the three samples

Table S3. Summary of the Charge and Discharge Capacities, Coulombic Efficiencies and

Capacity Retentions of the three samples at 2C

	lst cycle		55th cycle		
	discharge capacity	charge capacity	coulombic	discharge	capacity
	(mAh g ⁻¹)	(mAh g ⁻¹)	efficiency (%)	capacity (mAh g-	retention
				1)	(%)
CLNR-TiO ₂	215.1	206.6	96.0	208.9	97.1
FLNP-TiO ₂	69.7	68.4	98.1	40.2	57.7
Microsphere-	52.9	50.6	95.7	42.3	80.0
TiO ₂					

Morphology	Initial discharge capacity at	Discharge capacity after cycles at 5	
	5C (mAh g ⁻¹)	(mAh g ⁻¹)	
CLNR-TiO ₂	215.6 mAh g ⁻¹	198.3 mAh g ⁻¹ (100 cycles Present work)	
Hierarchical spheres	152 mAh g ⁻¹	136 mAh g ⁻¹ (100 cycles) ¹	
Hollow spheres	150 mAh g ⁻¹	123 mAh g ⁻¹ (200 cycles) ²	
Ultrathin nanosheets	200 mAh g ⁻¹	140 mAh g ⁻¹ (200 cycles) ³	
Carbon-supported	205 mAh g ⁻¹	147.8 mAh g ⁻¹ (100 cycles) ⁴	
ultra-thin nanosheets			
Nanotubes grown on	176 mAh g ⁻¹	159 mAh g ⁻¹ (150 cycles) ⁵	
graphene			

Table S4. Summary of discharge capacities of TiO₂ reported from some previous works

References

- J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Y. Luan, S. Madhavi, F. Y. C.
 Boey, L. A. Archer and X. W. Lou, J. Am. Chem. Soc., 2010, 132, 6124-6130.
- 2 S. J. Ding, J. S. Chen, Z. Y. Wang, Y. L. Cheah, S. Madhavi, X. Hu, and X. W. Lou, J. Mater. Chem., 2011, 21, 1677-1680.
- 3 S.-H. Yu, M. Park, H. S. Kim, A. Jin, M. Shokouhimehr, T.-Y. Ahn, Y.-W. Kim, T. Hyeon and Y.-E. Sung, RSC Adv., 2014, 4, 12087-12093.
- 4 J. S. Chen, H. Liu, S. Z. Qiao and X. W. Lou, J. Mater. Chem., 2011, 21, 5687– 5692.
- 5 Y. F. Tang, Z. Q. Liu, X. J. Lu, B. F. Wang and F. Q. Huang, RSC Adv., 2014, 4, 36372-36376.