Supplementary material for

Evolutionary de novo design of phenothiazine derivatives for dye-sensitized solar cells

Vishwesh Venkatraman, Marco Foscato, Vidar R. Jensen and Bjørn Kåre Alsberg

Table S1: QSPR predictions for the molecules used in the calibration and validation. In the "Molecule" column, names starting with "C" indicate the calibration data while those starting with "T" are the test data. The "QSPR" column contains the predicted PCE with calculated uncertainties. h_i is the leverage value for each prediction. The last column contains the 6 ADAN categories D_1 - D_6 (see the main text), where a "0" indicates no violation and "1" otherwise.

Molecule	Structure	PCE	QSPR	h_i	ADAN
C01[29]		6.40	5.94 ± 0.53	0.07	0,0,0,0,0,0
C02[9]		2.40	2.39±0.57	0.04	0,0,0,0,0,0
C03[7]		5.80	6.15±0.45	0.03	0,0,0,0,0,0
C04[7]		4.90	5.14±0.44	0.07	0,0,0,0,0,0
C05[16]		4.91	5.35±0.41	0.04	0,0,0,0,0,0
C06[16]		7.31	6.76±1.27	0.09	0,0,0,0,0,0
C07[18]		6.34	6.08 ± 0.64	0.03	0,0,0,0,0,0
C08[13]		6.87	7.37±0.43	0.04	0,0,0,0,0,0
			Continue contract c	nued o	n next page

Table $S1 - Continued$ from previous page								
Molecule	Structure	PCE	\mathbf{QSPR}	h_i	ADAN			
C09[13]		8.18	8.08±0.47	0.05	0,0,0,0,0,0			
C10[13]		7.57	7.44±0.46	0.06	0,0,0,0,0,0			
C11[14]		6.72	6.86±0.33	0.02	0,0,0,0,0,0			
C12[14]		3.98	4.46±0.48	0.00	0,0,0,0,0,0			
C13[28]		1.90	2.00 ± 0.46	0.08	0,0,0,0,0,0			
C14[28]		2.40	1.85 ± 0.48	0.08	0,0,0,0,0,0			
C15[26]		0.70	0.45 ± 0.56	0.13	0,0,0,1,0,0			
C16[26]		1.20	2.01±0.93	0.05	0,0,0,0,0,1			
	•		<i>a</i>					

	Table S1 – Continued from	n previous pa	ige		
Molecule	Structure	PCE	QSPR	h_i	ADAN
C17[26]		1.80	1.16±0.67	0.12	0,0,0,0,0,0
C18[26]		0.50	0.56±0.79	0.14	1,0,0,1,0,0
C19[27]		0.40	0.89±0.82	0.09	0,0,0,1,0,0
C20[36]		5.40	5.33±0.28	0.03	0,0,0,0,0,0
C21[24]	s -	6.53	6.08±0.58	0.03	0,0,0,0,0,0
C22[35]		3.78	3.62±0.43	0.01	0,0,0,0,0,0
C23[37]		4.60	4.58±0.34	0.03	0,0,0,0,0,0

	Table S1 – Continued from	previous pa	ge		
Molecule	Structure	PCE	\mathbf{QSPR}	h_i	ADAN
C24[37]		2.04	3.28±1.12	0.03	0,0,0,0,0,1
C25[37]		6.22	5.35±0.64	0.03	0,0,0,0,0,0
C26[37]		4.24	3.20±0.92	0.04	0,0,1,0,0,1
C27[4]		5.84	6.04±0.21	0.02	0,0,0,0,0,0
C28[4]		5.76	5.47±0.30	0.05	0,0,0,0,0,0
C29[5]		5.51	5.72±0.69	0.05	0,0,0,0,0,0
C30[3]	N N N	5.43	5.42±0.33	0.02	0,0,0,0,0,0
			<i>a</i>		

Table S1 – Continued from previous page							
Molecule	Structure	PCE	QSPR	h_i	ADAN		
C31[3]		5.44	5.57±0.25	0.01	0,0,0,0,0,0		
C32[3]		5.05	4.89±0.29	0.07	0,0,0,0,0,0		
C33[3]		6.52	$6.17 {\pm} 0.53$	0.02	0,0,0,0,0,0		
C34[2]		4.13	4.14 ± 0.46	0.05	0,0,0,0,0,0		
C35[2]		4.22	4.20±0.39	0.05	0,0,0,0,0,0		
C36[31]		4.90	4.99±0.37	0.03	0,0,0,0,0,0		
C37[31]		6.79	6.43±0.52	0.03	0,0,0,0,0,0		

	Table S1 – Continued from	previous pa	ige		
Molecule	Structure	PCE	\mathbf{QSPR}	h_i	ADAN
C38[17]		4.54	5.05 ± 0.40	0.01	0,0,0,0,0,0
C39[12]		7.87	7.63±0.55	0.04	0,0,0,0,0,0
C40[12]		5.62	6.35 ± 0.51	0.01	0,0,0,0,0,0
C41[22]		6.10	6.12±0.20	0.02	0,0,0,0,0,0
C42[33]	S С С С С С С С С С С С С С С С С С С С	1.83	4.14±1.63	0.05	0,0,0,0,1,1
C43[21]		5.43	4.93±0.54	0.04	0,0,0,0,0,1
C44[19]		6.04	5.98±0.66	0.01	0,0,1,0,0,0
C45[34]		6.14	5.43±0.71	0.00	0,0,0,0,0,0

Moloculo	Structure	$\frac{1}{PCF}$	OSPR	h	
molecule		TUE	QSFR	n_i	ADAIN
C46[34]		6.49	$7.00 {\pm} 0.51$	0.08	0,0,0,0,0,0
C47[1]		0.90	0.49±0.99	0.13	0,0,0,1,0,0
C48[1]	~coffeet	0.90	1.67 ± 1.49	0.10	0,0,0,0,0,0
C49[11]		4.66	4.77±0.40	0.02	0,0,0,0,0,0
C50[11]	Kachorg.	5.19	4.81±0.46	0.01	0,0,0,0,0,0
C51[40]		6.00	4.89±0.99	0.02	0,0,0,0,0,0
C52[39]		5.16	4.08±0.93	0.01	0,0,0,0,0,0
C53[39]		3.26	3.54 ± 0.62	0.02	0,0,0,0,0,0
C54[38]		7.50	7.40±0.93	0.07	0,0,0,0,0,0

Molecule	Structure	PCE	QSPR	h_i	ADAN
C55[25]		7.00	7.65±0.91	0.19	1,0,0,0,0,0
C56[15]		5.02	5.67 ± 0.55	0.02	0,0,0,0,0,0
C57[23]		5.44	5.16±0.32	0.01	0,0,0,0,0,0
C58[23]		6.80	6.94±0.33	0.06	0,0,0,0,0,0
C59[20]	E	4.90	4.32±1.17	0.26	1,0,1,0,0,0
T01[37]		5.60	4.40±0.46	0.05	0,0,0,0,0,0
T02[21]		6.02	5.75±0.44	0.05	0,0,0,0,0,0
			Conti	nued o	n next page

Structure	$\frac{1}{PCF}$	OSPR	<i>h</i> .	ΔΔΔΝ
	$I \cup E$	ysi n	n_i	ADAN
	0.80	$1.68 {\pm} 0.95$	0.09	0,0,0,0,0,0
	4.56	3.80±0.64	0.03	0,0,0,0,0,0
	0.60	$0.97 {\pm} 0.56$	0.10	0,0,0,0,0,0
	6.85	6.27±0.80	0.05	0,0,0,0,0,0
	6.70	5.94±0.48	0.08	0,0,0,0,0,0
	5.73	5.50 ± 0.38	0.01	0,0,0,0,0,0
	4.80	3.68 ± 0.77	0.05	0,0,0,0,0,0
	7.30	6.63 ± 0.45	0.02	0,0,0,0,0,0
	Structure	$\begin{array}{c c} \mathbf{Structure} & PCE \\ \hline \\ $	Structure PCE QSPR 0.80 1.68±0.95 4.56 3.80±0.64 0.60 0.97±0.56 0.60 0.97±0.56 0.60 5.73 5.73 5.50±0.38 0.60 3.68±0.77 0.60 3.68±0.77 0.60 3.68±0.77	Structure PCE QSPR h_i 0.80 1.68±0.95 0.09 4.56 3.80±0.64 0.03 0.60 0.97±0.56 0.10 0.60 0.97±0.56 0.10 0.60 5.73 5.94±0.48 0.08 0.60 5.73 5.50±0.38 0.01 0.60 5.73 5.50±0.38 0.01 0.60 3.68±0.77 0.05 0.61 7.30 6.63±0.45 0.02

Table S1 – Continued from previous page							
Molecule	Structure	PCE	\mathbf{QSPR}	h_i	ADAN		
T11[2]		3.56	4.28±0.46	0.03	0,0,0,0,0,0		
T12[3]		7.38	7.47±0.45	0.04	0,0,0,0,0,0		
T13[26]		1.90	2.06±0.64	0.04	0,0,0,0,0,0		
T14[35]		2.48	4.29±0.43	0.00	0,0,0,0,0,0		
T15[18]		5.12	5.15±0.43	0.01	0,0,0,0,0,0		
T16[20]		3.91	4.01±0.35	0.03	0,0,0,0,0,0		
T17[13]		8.08	7.37±0.41	0.04	0,0,0,0,0,0		
			Contin	nued \overline{o}	$n \ next \ page$		

Table S1 – Continued from previous page								
Molecule	Structure	PCE	\mathbf{QSPR}	h_i	ADAN			
T18[34]		7.13	5.82±0.33	0.00	0,0,0,0,0,0			
T19[17]		6.32	$6.32 {\pm} 0.40$	0.02	0,0,0,0,0,0			
T20[31]		4.40	4.40±0.96	0.03	0,0,0,0,0,0			
T21[16]		5.53	5.52±0.44	0.02	0,0,0,0,0,0			
T22[7]		6.80	6.21±0.49	0.04	0,0,0,0,0,0			
T23[23]		6.37	6.12±0.35	0.01	0,0,0,0,0,0			
T24[14]		5.12	4.56±0.32	0.01	0,0,0,0,0,0			

	Table S1 – Continued from	previous pa	ige	1	
Molecule	Structure	PCE	QSPR	h_i	ADAN
T25[27]		6.80	6.06±0.47	0.01	0,0,0,0,0,0
T26[26]		1.30	1.85±0.52	0.10	0,0,0,0,0,0
T27[17]		4.79	5.17±0.46	0.02	0,0,0,0,0,0
T28[24]		7.44	5.32 ± 0.52	0.04	0,0,0,0,0,0
T29[35]		4.41	5.35±0.52	0.00	0,0,0,0,0,0
T30[12]		8.07	6.88±0.40	0.02	0,0,0,0,0,0
T31[17]		5.23	5.87 ± 0.53	0.03	0,0,0,0,0,0
T32[4]		6.29	6.03±0.31	0.03	0,0,0,0,0,0
	2		Conti	nued o	n next page

	Table $S1 - Continued$ from	previous pa	ge		
Molecule	Structure	$PC\overline{E}$	QSPR	h_i	ADAN
T33[31]		6.02	5.56±0.38	0.03	0,0,0,0,0,0
T34[27]		5.60	4.98±0.36	0.01	0,0,0,0,0,0
T35[17]		4.53	5.44±0.43	0.04	0,0,0,0,0,0
T36[21]		5.36	5.66 ± 0.46	0.07	0,0,0,0,0,0
T37[12]		7.98	5.66±0.37	0.00	0,0,0,0,0,0
T38[28]		5.39	6.08±0.34	0.04	0,0,0,0,0,0
T39[23]		3.94	6.40±0.51	0.04	0,0,1,0,0,0

	Table $S1 - Continued$ from	n previous po	ige		
Molecule	Structure	PCE	QSPR	h_i	ADAN
T40[9]		3.60	3.44 ± 0.54	0.02	0,0,1,0,0,0
T41[32]		2.10	3.90±0.59	0.03	0,0,0,0,0,1
T42[15]		3.54	4.83±0.35	0.01	0,0,0,0,0,1
T43[38]		6.40	6.14±0.86	0.03	0,0,1,0,0,0
T44[12]		2.24	5.27±0.38	0.01	0,0,0,0,0,1
T45[18]		6.82	3.86±0.69	0.02	0,0,1,0,0,0
T46[37]		5.22	4.20±0.55	0.03	0,0,1,0,0,0
Continued on next page					

	Table $S1 - Continued$ from	previous po	ige		
Molecule	Structure	PCE	\mathbf{QSPR}	h_i	ADAN
T47[27]		1.30	0.87±0.66	0.08	0,0,0,1,0,0
T48[14]		6.13	5.26±0.44	0.02	0,0,0,0,0,1
T49[10]		4.07	4.25±0.36	0.02	0,0,0,0,0,1
T50[15]		4.39	5.41±0.41	0.02	0,0,0,0,0,1
T51[28]		4.80	4.61±0.40	0.03	0,0,0,0,0,1
T52[26]		0.40	2.67±0.61	0.07	0,0,1,0,0,0
T53[14]	С С С С С С С С С С С С С С С С С С С	4.43	4.49±0.37	0.02	0,0,0,0,0,1
T54[1]	Laborate	0.50	$1.90{\pm}1.09$	0.09	0,0,1,0,0,0
			Continue contraction contrac	nued o	n next page

Molecule	Structure	$\frac{PCE}{PCE}$	OSPR	h.	ADAN
T55[3]		6.44	7.26±0.74	0.11	1,0,1,0,0,0
T56[6]		5.40	4.49±0.59	0.01	0,0,1,0,0,1
T57[30]		6.72	4.22±0.41	0.03	0,0,0,0,1,1
T58[10]		3.88	4.12±0.60	0.04	0,0,0,0,1,1

Table S2: The compatibility matrix for attachment point classes. Each fragment is a small molecule with explicitly modeled attachment points (AP). Each AP is further annotated with a "class" (R#) that contains additional information in the form of dummy atoms used for the identification of compatible bond types. In addition to the 16 classes derived from BRICS cleavage rules, the class "me" is used to refer to the methyl group.

Class

Definition

C (carbonyl from amides/esters)
N (amide)
O (ether/ester)
C (alkyl from amines/(thio)ethers)
N (amine)
C (carbonyl from acylated rings)
C (olefin)
C (alkyl from ring substitutions)
n (aromatic)
N (lactame)
S (sulfur from thioethers/sulfoxides)
S (sulfone from sulfonamides)
C ('activated' aliphatic ring C, next to $N/O/S$)
c ('activated' aromatic ring c, next to $N/O/S$)
C (aliphatic ring C, not next to N/O/S)
c (aromatic ring c, not next to $N/O/S$)

R1R2,R3,R10 R2R12,R14,R16 R3 R4,R13,R15,R16,me R5,R11 R4 R5R13,R15,me R6 R13,R14,R15,R16,me R7R7R8 R9,R10,R13,R14,R15,R16 R9R13,R14,R15,R16,me R10 R13,R14,R15,R16,me R11 R13,R14,R15,R16,me

Compatible Class

- R12 me
- R13 R13,R14,R15,R16
- R14 R14,R15,R16
- R15 R15,R16
- R16 R16

Figure F1: The phenothiazine scaffold to which different fragments are attached as dictated by the compatibility rules.

Figure F2: A subset of the fragments obtained by applying the BRICS rules to existing dyes. The R# correspond to the class of the attachment point. Connecting two fragments with compatible attachment points requires the addition of a single bond (only class R7 has a double bond) between the participating atoms of the respective fragments.

References

- S. H. Bae, K. D. Seo, W. S. Choi, J. Y. Hong, and H. K. Kim. Near-ir organic sensitizers containing squaraine and phenothiazine units for dye-sensitized solar cells. *Dyes Pigments*, 113(0):18 – 26, 2015.
- [2] D. Cao, J. Peng, Y. Hong, X. Fang, L. Wang, and H. Meier. Enhanced performance of the dye-sensitized solar cells with phenothiazine-based dyes containing double da branches. Org. Lett., 13(7):1610–1613, 2011.
- [3] Y. J. Chang, P.-T. Chou, Y.-Z. Lin, M. Watanabe, C.-J. Yang, T.-M. Chin, and T. J. Chow. Organic dyes containing oligo-phenothiazine for dye-sensitized solar cells. J. Mater. Chem., 22:21704–21712, 2012.
- [4] C. Chen, J.-Y. Liao, Z. Chi, B. Xu, X. Zhang, D.-B. Kuang, Y. Zhang, S. Liu, and J. Xu. Effect of polyphenyl-substituted ethylene end-capped groups in metal-free organic dyes on performance of dye-sensitized solar cells. *RSC Adv.*, 2:7788–7797, 2012.
- [5] C. Chen, J.-Y. Liao, Z. Chi, B. Xu, X. Zhang, D.-B. Kuang, Y. Zhang, S. Liu, and J. Xu. Metal-free organic dyes derived from triphenylethylene for dye-sensitized solar cells: tuning of the performance by phenothiazine and carbazole. J. Mater. Chem., 22:8994–9005, 2012.
- [6] C. Chen, X. Yang, M. Cheng, F. Zhang, J. Zhao, and L. Sun. Efficient panchromatic organic sensitizers with dihydrothiazole derivative as π-bridge for dye-sensitized solar cells. ACS Appl. Mater. Inter., 5(21):10960–10965, 2013.
- [7] M. Cheng, X. Yang, C. Chen, J. Zhao, Q. Tan, and L. Sun. Effect of the acceptor on the performance of dye-sensitized solar cells. *Phys. Chem. Chem. Phys.*, 15:17452–17459, 2013.
- [8] M. Cheng, X. Yang, F. Zhang, J. Zhao, and L. Sun. Tuning the homo and lumo energy levels of organic dyes with n-carboxomethylpyridinium as acceptor to optimize the efficiency of dyesensitized solar cells. J. Phys. Chem. C, 117(18):9076–9083, 2013.
- [9] K. S. Gupta, J. Zhang, G. Marotta, M. A. Reddy, S. P. Singh, A. Islam, L. Han, F. D. Angelis, M. Chandrasekharam, and M. Pastore. Effect of the anchoring group in the performance of carbazole-phenothiazine dyads for dye-sensitized solar cells. *Dyes Pigments*, 113(0):536 – 545, 2015.
- [10] A. S. Hart, C. B. K. C., N. K. Subbaiyan, P. A. Karr, and F. DSouza. Phenothiazine-sensitized organic solar cells: Effect of dye anchor group positioning on the cell performance. ACS Appl. Mater. Inter., 4(11):5813–5820, 2012.
- [11] Y. Hong, J.-Y. Liao, J. Fu, D.-B. Kuang, H. Meier, C.-Y. Su, and D. Cao. Performance of dye-sensitized solar cells based on novel sensitizers bearing asymmetric double $d\pi a$ chains with arylamines as donors. *Dyes Pigments*, 94(3):481 489, 2012.

- [12] Y. Hua, S. Chang, J. He, C. Zhang, J. Zhao, T. Chen, W.-Y. Wong, W.-K. Wong, and X. Zhu. Molecular engineering of simple phenothiazine-based dyes to modulate dye aggregation, charge recombination, and dye regeneration in highly efficient dye-sensitized solar cells. *Chem. Eur. J.*, 20(21):6300–6308, 2014.
- [13] Y. Hua, S. Chang, D. Huang, X. Zhou, X. Zhu, J. Zhao, T. Chen, W.-Y. Wong, and W.-K. Wong. Significant improvement of dye-sensitized solar cell performance using simple phenothiazinebased dyes. *Chem. Mater.*, 25(10):2146–2153, 2013.
- [14] Y. Hua, S. Chang, H. Wang, D. Huang, J. Zhao, T. Chen, W.-Y. Wong, W.-K. Wong, and X. Zhu. New phenothiazine-based dyes for efficient dye-sensitized solar cells: Positioning effect of a donor group on the cell performance. *Journal of Power Sources*, 243(0):253 – 259, 2013.
- [15] Z.-S. Huang, H.-L. Feng, X.-F. Zang, Z. Iqbal, H. Zeng, D.-B. Kuang, L. Wang, H. Meier, and D. Cao. Dithienopyrrolobenzothiadiazole-based organic dyes for efficient dye-sensitized solar cells. J. Mater. Chem. A, 2:15365–15376, 2014.
- [16] W.-I. Hung, Y.-Y. Liao, C.-Y. Hsu, H.-H. Chou, T.-H. Lee, W.-S. Kao, and J. T. Lin. Highperformance dye-sensitized solar cells based on phenothiazine dyes containing double anchors and thiophene spacers. *Chem. Asian J.*, 9(1):357–366, 2014.
- [17] Z. Iqbal, W.-Q. Wu, D.-B. Kuang, L. Wang, H. Meier, and D. Cao. Phenothiazine-based dyes with bilateral extension of -conjugation for efficient dye-sensitized solar cells. *Dyes Pigments*, 96(3):722 - 731, 2013.
- [18] Z. Iqbal, W.-Q. Wu, H. Zhang, L. Han, X. Fang, L. Wang, D.-B. Kuang, H. Meier, and D. Cao. Influence of spatial arrangements of -spacer and acceptor of phenothiazine based dyes on the performance of dye-sensitized solar cells. Org. Elec., 14(10):2662 – 2672, 2013.
- [19] H. J. Jo, J. E. Nam, D.-H. Kim, H. Kim, and J.-K. Kang. A comparison of the electronic and photovoltaic properties of novel twin-anchoring organic dyes containing varying lengths of π -bridges in dye-sensitized solar cells. *Dyes Pigments*, 102(0):285 292, 2014.
- [20] M. S. Kim, M. J. Cho, Y. C. Choi, K.-S. Ahn, D. H. Choi, K. Kim, and J. H. Kim. Enhancement of photovoltaic performance in dye-sensitized solar cells fabricated with dendritic photosensitizer containing site-isolated chromophores. *Dyes Pigments*, 99(3):986 – 994, 2013.
- [21] S. H. Kim, H. W. Kim, C. Sakong, J. Namgoong, S. W. Park, M. J. Ko, C. H. Lee, W. I. Lee, and J. P. Kim. Effect of five-membered heteroaromatic linkers to the performance of phenothiazine-based dye-sensitized solar cells. *Org. Lett.*, 13(21):5784–5787, 2011.
- [22] S. H. Kim, C. Sakong, J. B. Chang, B. Kim, M. J. Ko, D. H. Kim, K. S. Hong, and J. P. Kim. The effect of n-substitution and ethylthic substitution on the performance of phenothiazine donors in dye-sensitized solar cells. *Dyes Pigments*, 97(1):262 – 271, 2013.

- [23] R. Y.-Y. Lin, T.-C. Chu, P.-W. Chen, J.-S. Ni, P.-C. Shih, Y.-C. Chen, K.-C. Ho, and J. T. Lin. Phenothiazinedioxide-conjugated sensitizers and a dual-tempo/iodide redox mediator for dye-sensitized solar cells. *Chem. Sus. Chem.*, 7(8):2221–2229, 2014.
- [24] M. Marszalek, S. Nagane, A. Ichake, R. Humphry-Baker, V. Paul, S. M. Zakeeruddin, and M. Gratzel. Tuning spectral properties of phenothiazine based donor-[small pi]-acceptor dyes for efficient dye-sensitized solar cells. J. Mater. Chem., 22:889–894, 2012.
- [25] M. Marszalek, S. Nagane, A. Ichake, R. Humphry-Baker, V. Paul, S. M. Zakeeruddin, and M. Gratzel. Structural variations of d-[small pi]-a dyes influence on the photovoltaic performance of dye-sensitized solar cells. *RSC Adv.*, 3:7921–7927, 2013.
- [26] T. Meyer, D. Ogermann, A. Pankrath, K. Kleinermanns, and T. J. J. Mller. Phenothiazinyl rhodanylidene merocyanines for dye-sensitized solar cells. J. Org. Chem., 77(8):3704–3715, 2012.
- [27] S. S. Park, Y. S. Won, Y. C. Choi, and J. H. Kim. Molecular design of organic dyes with double electron acceptor for dye-sensitized solar cell. *Energy Fuels*, 23(7):3732–3736, 2009.
- [28] H. Tian, X. Yang, R. Chen, Y. Pan, L. Li, A. Hagfeldt, and L. Sun. Phenothiazine derivatives for efficient organic dye-sensitized solar cells. *Chem. Commun.*, pages 3741–3743, 2007.
- [29] H. Tian, X. Yang, J. Cong, R. Chen, C. Teng, J. Liu, Y. Hao, L. Wang, and L. Sun. Effect of different electron donating groups on the performance of dye-sensitized solar cells. *Dyes Pigments*, 84(1):62 – 68, 2010.
- [30] M.-H. Tsao, T.-Y. Wu, H.-P. Wang, I.-W. Sun, S.-G. Su, Y.-C. Lin, and C.-W. Chang. An efficient metal-free sensitizer for dye-sensitized solar cells. *Mater. Lett.*, 65(3):583 586, 2011.
- [31] Z. Wan, C. Jia, Y. Duan, J. Zhang, Y. Lin, and Y. Shi. Effects of different acceptors in phenothiazine-triphenylamine dyes on the optical, electrochemical, and photovoltaic properties. *Dyes Pigments*, 94(1):150 – 155, 2012.
- [32] Z. Wan, C. Jia, J. Zhang, Y. Duan, Y. Lin, and Y. Shi. Triphenylamine-based starburst dyes with carbazole and phenothiazine antennas for dye-sensitized solar cells. *Journal of Power Sources*, 199(0):426 – 431, 2012.
- [33] Z. Wan, C. Jia, L. Zhou, W. Huo, X. Yao, and Y. Shi. Influence of different arylamine electron donors in organic sensitizers for dye-sensitized solar cells. *Dyes Pigments*, 95(1):41 46, 2012.
- [34] S. Wang, H. Wang, J. Guo, H. Tang, and J. Zhao. Influence of the terminal electron donor in $dd\pi a$ phenothiazine dyes for dye-sensitized solar cells. *Dyes Pigments*, 109(0):96 104, 2014.
- [35] W. Wu, J. Yang, J. Hua, J. Tang, L. Zhang, Y. Long, and H. Tian. Efficient and stable dyesensitized solar cells based on phenothiazine sensitizers with thiophene units. J. Mater. Chem., 20:1772–1779, 2010.

- [36] Z. Xie, A. Midya, K. P. Loh, S. Adams, D. J. Blackwood, J. Wang, X. Zhang, and Z. Chen. Highly efficient dye-sensitized solar cells using phenothiazine derivative organic dyes. *Prog. Photovoltaics Res. Appl.*, 18(8):573–581, 2010.
- [37] C.-J. Yang, Y. J. Chang, M. Watanabe, Y.-S. Hon, and T. J. Chow. Phenothiazine derivatives as organic sensitizers for highly efficient dye-sensitized solar cells. J. Mater. Chem., 22:4040–4049, 2012.
- [38] X. Yang, J. Zhao, L. Wang, J. Tian, and L. Sun. Phenothiazine derivatives-based d-[small pi]-a and d-a-[small pi]-a organic dyes for dye-sensitized solar cells. *RSC Adv.*, 4:24377–24383, 2014.
- [39] X.-F. Zang, Z.-S. Huang, H.-L. Wu, Z. Iqbal, L. Wang, H. Meier, and D. Cao. Molecular design of the diketopyrrolopyrrole-based dyes with varied donor units for efficient dye-sensitized solar cells. *Journal of Power Sources*, 271(0):455 – 464, 2014.
- [40] J. Zhao, X. Yang, M. Cheng, S. Li, and L. Sun. New organic dyes with a phenanthrenequinone derivative as the -conjugated bridge for dye-sensitized solar cells. J. Phys. Chem. C, 117(25):12936-12941, 2013.