Nonaqueous synthesis of TiO₂-carbon hybrid nanomaterials with enhanced stable photocatalytic hydrogen production activity

Yijun Yang,^a Ye Yao,^b Liu He, ^b Yeteng Zhong,^a Ying Ma*^b and Jiannian Yao*^a

^aBeijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China. ^bState Key Laboratory of Material Processing and Die & Mould Technology, School of Material Sciences and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China. Corresponding author: jnyao@iccas.ac.cn; yingma@hust.edu.cn

Figure S1. The emission spectra of Xe light source (CEL-HXF300, Beijing Aulight Co., Ltd.) with and without the 400 nm long wave pass filter.

Figure S2. XPS spectra of TiO₂ NS-C and TiO₂ NP-C: a) Ti 2p; b) O 1s; c) C 1s.

Figure S3. UV-vis absorption spectrum of as-prepared TiO₂ nanosheets in hexane.

Figure S4. The transient photocurrent responses of the PEC cells using TiO₂ NS-C, TiO₂ NP-C, TiO₂ NP and TiO₂ NS as working electrodes for three 50 seconds light-on-off cycles under an illumination of 10 mW·cm⁻².

Figure S5. Diffuse reflectance UV-visible spectra (a, c) and IR spectra (b, d) of TiO_2 NS-C (a, b) and TiO_2 NP-C (c, d) before and after photocatalysis.

Figure S1. The emission spectra of Xe light source (CEL-HXF300, Beijing Aulight Co., Ltd.) with and without the 400 nm long wave pass filter.

Figure S2. XPS spectra of TiO₂ NS-C and TiO₂ NP-C: a) Ti 2p; b) O 1s; c) C 1s.

Figure S3. UV-vis absorption spectrum of as-prepared TiO_2 nanosheets in hexane. The bandgap energy is calculated to be 3.68 eV.

Figure S4. The transient photocurrent responses of the PEC cells using TiO₂ NS-C, TiO₂ NP-C, TiO₂ NP and TiO₂ NS as working electrodes for three 50 seconds light-on-off cycles under an illumination of 10 mW·cm⁻².

Transient photocurrent response was performed on a Zennium electrochemical workstation (ZAHNER, Germany) in a standard three-electrode system with the as-prepared samples as the working electrodes with an active area of *ca.* 1 cm², a Pt wire as the counter electrode and Ag/AgCl (saturating KCl) as the reference electrode, which includes a UV light source (365 nm) and the corresponding control system. 1 M Na₂SO₄ aqueous solution was used as the electrolyte. For working electrodes, FTO glass (2cm × 1.2 cm) was immersed in an ethanolic dispersion of photocatalyst and followed by drying in the air. This process was repeated several times until the coated photocatalyst reaches ca. 0.4 mg·cm⁻² on FTO glass. The amperometric *I-t* curves were recorded under an illumination of 10 mW·cm⁻² for three 50 seconds light-on-off cycles.

Figure S5. Diffuse reflectance UV-visible spectra (a, c) and IR spectra (b, d) of TiO_2 NS-C (a, b) and TiO_2 NP-C (c, d) before and after photocatalysis.