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S1. Synthesis of PVDF-g-PTA Copolymer, PVDF-g-xPHFBM-PTA Copolymer, and Fluorinated 

Triethoxysilane Precursor
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Fig. S1 Synthesis scheme for (a) PVDF-g-PTA copolymer, (b) PVDF-g-xPHFBM-PTA copolymer, and 

(c) fluorinated triethoxysilane precursor FTS.
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Fig. S2 (a) ATR-FTIR spectra of PVDF, PVDF(-HF) treated with KOH, and PVDF-g-PTA copolymer. 

Inset: chemical structure of PVDF-g-PTA copolymer, (b) TG curves of PVDF-g-PTA copolymer, PTA 

and PVDF(-HF).

The chemical structure and ATR-FTIR spectrum of PVDF-g-PTA copolymer were shown in Fig. S2(a). 
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The peak of C=C double bond at 1675 cm-1 in the spectrum of PVDF(-HF) became quite weak when 

copolymerized with monomer TA. Peaks at 1479 cm-1 and 952 cm-1 were related to the quaternary 

ammonium groups in PTA chain. The peak at 1723 cm-1 appeared in the spectra of PVDF-g-PTA was 

attributed to the C=O bonds from PTA chain. TGA measurements were performed to determine grafting 

degree of PTA Fig. S2(b). The decomposition of PTA appeared at the beginning, and 60.3 wt% weight 

loss of PTA was obtained after the second stage of decomposition with the temperature of 287.3 oC. The 

decomposition of PVDF(-HF) appeared at 440 oC. The weight percentage of grafted PTA segments in 

PVDF-g-PTA copolymer was calculated about 14.6 wt%.
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Fig. S3 ATR-FTIR spectra for (a) PVDF-g-PHFBM-PTA copolymer, and (b) fluorinated triethoxysilane 

precursor FTS. 

For PVDF-g-PHFBM-PTA copolymer, the absorption band at 1745 cm−1 and 1100 cm−1 was assigned 

to the C=O stretching and CF3 symmetric stretching from PHFBM segments, respectively; The peak at 

1486 cm−1 and 945 cm−1 was assigned to the bending and stretching vibration of methyl groups of 

ammonium from PTA segments. For fluorinated triethoxysilane precursor FTS, the peak at 1745 cm−1 

was contributed to the C=O stretching of PHFBA segments; the peaks at 1278 cm−1, 1185 cm−1, and 1101 

cm−1 were characteristic of CFx symmetric stretching in PHFBA segments; The peak at 1079 cm−1 was 

assigned to the Si-O-C stretching from APTS; The absorption peaks at 1291 cm−1 belonged to C–N 
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stretching mode from APTS; No deformation vibration of N-H was observed at 1650 cm−1 indicated that 

primary amines reacted with two equivalents of acceptor to form tertiary amines.

S2 In Situ Biomimetic Mineralization during Membrane Preparation

Fig. S4 Digital photo of PVDF-g-PTA/NMP membrane casting solution and PVDF-g-

PTA/NMP/TALH(H2O) membrane casting solution after 12 h of mineralization. The equal amount of 

water was added in PVDF-g-PTA/NMP membrane casting solution to eliminate the influence of water.

S3 Characterizations of the PVDF-g-PTA/TiO2 Hybrid Membranes
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Fig. S5 The actual contents (from TGA), and theoretical contents (from casting solution composition) of 

TiO2 NPs in PVDF-g-PTA/TiO2 hybrid membranes.

Table S1 Elements analysis results of PVDF-g-PTA/TiO2 hybrid membranes determined by XPS and the 

bulk elemental compositions of Ti in membranes determined by TGA.
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Membranes
C (wt 

%)

N (wt 

%)

O (wt 

%)

F (wt 

%)

Ti (wt 

%)

TiTGA 

(wt %)

Ti/TiTG

A

PVDF-g-PTA/TiO2 

2.5%
42.96 1.82 9.97 42.51 2.74 0.94 2.91 

PVDF-g-PTA/TiO2 5% 46.75 2.32 10.65 36.00 4.28 1.61 2.66 

PVDF-g-PTA/TiO2 10% 52.82 6.21 19.58 14.16 7.22 3.49 2.17 

Fig. S6 The hydrophilicity (a) and superoleophobicity (b) of PVDF-g-PTA/TiO2 10% hybrid membrane 

surface after shaken (100 rpm) in the water for 30 days.
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S4 Characterizations of the PVDF-g-PHFBM-PTA/TiO2 and PVDF-g-PTA/TiO2-FTS Hybrid 

Membranes

Fig. S7 Cross-section and surface morphologies of (a, b) PVDF-g-xPHFBM-PTA/TiO2 hybrid membrane 

(x=1) and (c, d) PVDF-g-PTA/TiO2-xFTS hybrid membrane (x=1). 
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Fig. S8 Wide scan XPS spectrum of PVDF-g-xPHFBM-PTA/TiO2 and PVDF-g-PTA/TiO2-xFTS hybrid 

membrane (x=1).
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Fig. S9 Underwater captive air contact angles of PVDF-g-xPHFBM-PTA/TiO2 and PVDF-g-PTA/TiO2-

xFTS hybrid membranes

The surface TiO2 and -CF3 contents were calculated as following:

Surface TiO2 content=Ti %×3 (S1);  

Surface -CF3 content=φ×C %×4 (S2);

Ti % was the atom percentage of Ti element on membrane surfaces determined by XPS. The factor 3 

accounted for the 3 atoms in TiO2. C % was the atom percentage of C element on membrane surfaces 

determined by XPS. The factor 4 accounted for the 4 atoms in –CF3. φ was the area ratio of the peak for –

CF3 in C 1s XPS spectra. 


