Electronic Supplementary Information

Fabrication of Antifouling Polymer-Inorganic Hybrid Membranes through Synergy of Biomimetic Mineralization and Nonsolvent Induced Phase Separation

Xueting Zhao^{a,b}, Yanlei Su^{a,b}, Jialin Cao^{a,b}, Yafei Li^{a,b}, Runnan Zhang^{a,b}, Yanan Liu^{a,b}, Zhongyi Jiang^{a,b,*}

^a Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical

Engineering and Technology, Tianjin University, Tianjin 300072, China

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

^{*} Corresponding author. School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China

Tel: 86-22-27406646. Fax: 86-22-27406646.

E-mail address: <u>zhyjiang@tju.edu.cn</u> (Z.Y. Jiang)

S1. Synthesis of PVDF-g-PTA Copolymer, PVDF-g-xPHFBM-PTA Copolymer, and Fluorinated

Triethoxysilane Precursor

Fig. S1 Synthesis scheme for (a) PVDF-g-PTA copolymer, (b) PVDF-g-xPHFBM-PTA copolymer, and (c) fluorinated triethoxysilane precursor FTS.

Fig. S2 (a) ATR-FTIR spectra of PVDF, PVDF(-HF) treated with KOH, and PVDF-g-PTA copolymer. Inset: chemical structure of PVDF-g-PTA copolymer, (b) TG curves of PVDF-g-PTA copolymer, PTA and PVDF(-HF).

The chemical structure and ATR-FTIR spectrum of PVDF-g-PTA copolymer were shown in Fig. S2(a).

The peak of C=C double bond at 1675 cm⁻¹ in the spectrum of PVDF(-HF) became quite weak when copolymerized with monomer TA. Peaks at 1479 cm⁻¹ and 952 cm⁻¹ were related to the quaternary ammonium groups in PTA chain. The peak at 1723 cm⁻¹ appeared in the spectra of PVDF-g-PTA was attributed to the C=O bonds from PTA chain. TGA measurements were performed to determine grafting degree of PTA Fig. S2(b). The decomposition of PTA appeared at the beginning, and 60.3 wt% weight loss of PTA was obtained after the second stage of decomposition with the temperature of 287.3 °C. The decomposition of PVDF(-HF) appeared at 440 °C. The weight percentage of grafted PTA segments in PVDF-g-PTA copolymer was calculated about 14.6 wt%.

Fig. S3 ATR-FTIR spectra for (a) PVDF-g-PHFBM-PTA copolymer, and (b) fluorinated triethoxysilane precursor FTS.

For PVDF-g-PHFBM-PTA copolymer, the absorption band at 1745 cm⁻¹ and 1100 cm⁻¹ was assigned to the C=O stretching and CF₃ symmetric stretching from PHFBM segments, respectively; The peak at 1486 cm⁻¹ and 945 cm⁻¹ was assigned to the bending and stretching vibration of methyl groups of ammonium from PTA segments. For fluorinated triethoxysilane precursor FTS, the peak at 1745 cm⁻¹ was contributed to the C=O stretching of PHFBA segments; the peaks at 1278 cm⁻¹, 1185 cm⁻¹, and 1101 cm⁻¹ were characteristic of CF_x symmetric stretching in PHFBA segments; The peak at 1079 cm⁻¹ was assigned to the Si-O-C stretching from APTS; The absorption peaks at 1291 cm⁻¹ belonged to C–N stretching mode from APTS; No deformation vibration of N-H was observed at 1650 cm⁻¹ indicated that primary amines reacted with two equivalents of acceptor to form tertiary amines.

S2 In Situ Biomimetic Mineralization during Membrane Preparation

Fig. S4 Digital photo of PVDF-g-PTA/NMP membrane casting solution and PVDF-g-PTA/NMP/TALH(H₂O) membrane casting solution after 12 h of mineralization. The equal amount of water was added in PVDF-g-PTA/NMP membrane casting solution to eliminate the influence of water.

S3 Characterizations of the PVDF-g-PTA/TiO₂ Hybrid Membranes

Fig. S5 The actual contents (from TGA), and theoretical contents (from casting solution composition) of TiO₂ NPs in PVDF-g-PTA/TiO₂ hybrid membranes.

Table S1 Elements analysis results of PVDF-g-PTA/TiO₂ hybrid membranes determined by XPS and the bulk elemental compositions of Ti in membranes determined by TGA.

Membranes	C (wt	N (wt	O (wt	F (wt	Ti (wt	Ti ^{tga}	Ti/Ti ^{TG}
	%)	%)	%)	%)	%)	(wt %)	А
PVDF-g-PTA/TiO ₂	42.96	1.82	9.97	42.51	2.74	0.94	2.91
2.5%							
PVDF-g-PTA/TiO ₂ 5%	46.75	2.32	10.65	36.00	4.28	1.61	2.66
PVDF-g-PTA/TiO ₂ 10%	52.82	6.21	19.58	14.16	7.22	3.49	2.17

Fig. S6 The hydrophilicity (a) and superoleophobicity (b) of PVDF-g-PTA/TiO₂ 10% hybrid membrane surface after shaken (100 rpm) in the water for 30 days.

S4 Characterizations of the PVDF-g-PHFBM-PTA/TiO2 and PVDF-g-PTA/TiO2-FTS Hybrid

Membranes

Fig. S7 Cross-section and surface morphologies of (a, b) PVDF-g-xPHFBM-PTA/TiO₂ hybrid membrane

(x=1) and (c, d) PVDF-g-PTA/TiO₂-xFTS hybrid membrane (x=1).

Fig. S8 Wide scan XPS spectrum of PVDF-g-xPHFBM-PTA/TiO₂ and PVDF-g-PTA/TiO₂-xFTS hybrid

membrane (x=1).

PVDF-g-xPHFBM-PTA/TiO₂

PVDF-g-xPTA/TiO₂-FTS

Fig. S9 Underwater captive air contact angles of PVDF-g-xPHFBM-PTA/TiO₂ and PVDF-g-PTA/TiO₂-xFTS hybrid membranes

The surface TiO₂ and -CF₃ contents were calculated as following:

Surface TiO₂ content=Ti $\% \times 3$ (S1);

Surface -CF₃ content= $\varphi \times C \% \times 4$ (S2);

Ti % was the atom percentage of Ti element on membrane surfaces determined by XPS. The factor 3 accounted for the 3 atoms in TiO₂. C % was the atom percentage of C element on membrane surfaces determined by XPS. The factor 4 accounted for the 4 atoms in $-CF_3$. φ was the area ratio of the peak for $-CF_3$ in C 1s XPS spectra.