Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

# **Supporting Information**

# Microporous covalent triazine polymers: efficient Friedel-Crafts synthesis and adsorption/storage of CO<sub>2</sub> and CH<sub>4</sub>

Pillaiyar Puthiaraj, Sung-Min Cho, Yu-Ri Lee and Wha-Seung Ahn\*

Department of Chemistry and Chemical Engineering, Inha University,

Incheon 402-751, South Korea

\*E-mail: whasahn@inha.ac.kr

### **CONTENTS**

| S.No |                       | Page No. |
|------|-----------------------|----------|
| 1    | Experimental section  | S2       |
| 2    | Characterization data | S5       |
| 3    | References            | S13      |

#### **1. Experimental section**

#### **1.1 General methods**

All chemicals were purchased from commercial suppliers and used as received unless specified otherwise. The powder X-ray diffraction (PXRD) patterns were recorded on a Rigaku diffractometer using CuK $\alpha$  ( $\lambda$ =1.54 Å) with 0.5° min<sup>-1</sup>. The N<sub>2</sub> adsorption- desorption isotherms were measured in a BELsorp-Max (BEL, JAPAN) at 77K. The specific surface areas and pore sizes of the samples were calculated using the Brunauer-Emmett-Teller (BET) and nonlocal density functional theory (NL-DFT) model with slit pore geometry method, respectively. The surface morphology and size of the materials were analyzed by scanning electron microscopy-energy dispersive X-ray (SEM, Hitachi S-4300). The aluminium content was measured by inductively coupled plasma spectrometry (ICP-OES, Optima 7300DV). The thermal stability of the samples was evaluated by thermogravimetric analysis (TGA, SCINCO thermal gravimeter S-1000) under an Argon (Ar) atmosphere over the temperature range, 30–700 °C, in flowing argon at a heating rate of 5 °C min<sup>-1</sup>. The FT-IR spectra were obtained on a VERTEX 80V FT-IR spectrometer (Bruker) under ambient conditions. CO<sub>2</sub>, N<sub>2</sub> and CH<sub>4</sub> adsorption isotherms under static conditions were obtained using a BELsorp(II)-mini (BEL, Japan) at 273, 293, 298, 303, and 308 K from 0-1 bar. Highpressure CO<sub>2</sub> adsorption isotherms were obtained using a magnetic suspension balance (Rubotherm, Germany) with in situ density measurements in a closed system. High-pressure adsorption was carried out using ultra-high-purity CO2, N2 and CH4 (99.999%) over the pressure range, 0-35 bar at 300 K. The adsorption equilibrium was assumed when no further weight change in the sample under the given pressure condition was detected in 30 min. Before measuring the CO<sub>2</sub>, N<sub>2</sub> and CH<sub>4</sub> adsorption capacity, the buoyancy effect was corrected in ultra-high-purity He (99.999%).



Scheme S1. Schematic diagram of the Rubotherm experimental unit

#### 1.2 CO<sub>2</sub> adsorption/desorption recycling study

The same TGA unit (SCINCO thermal gravimeter S-1000) connected to a flow panel was used for the CO<sub>2</sub> adsorption/desorption measurements. A sample weight of ca. 10 mg was loaded into an alumina sample pan and subjected to the CO<sub>2</sub> adsorption studies. Ar (ultrahigh purity, U-Sung) was used as a purge gas in this study. The adsorption run was carried out using high purity CO<sub>2</sub> (99.999%). A feed flow rate to the sample chamber of 30 mL/min was controlled using a MFC. Initially, the sample was pretreated at 130 °C to remove the moisture using argon (99.999%) as a purge gas. When there was no weight loss, the temperature was decreased to the adsorption temperature and CO<sub>2</sub> was flowed into the chamber. After the CO<sub>2</sub> adsorption run, the desorption step was followed by a purge with Ar (99.999%).

#### **1.3 Isosteric heats of adsorption**

The isosteric heats of adsorption  $(Q_{st})$  were derived from the adsorption data using the Clausius-Clapeyron equation,

$$\Delta H = R[ \partial \ln P / \partial (1/T)]_{\theta}$$

where, R is the universal gas constant [kJmol<sup>-1</sup>K<sup>-1</sup>],  $\theta$  is the fraction of the adsorbed sites at a pressure P and temperature T.

#### **1.4 Synthesis of MCTP-1 network**

A 250 mL round bottom flask was charged with a measured amounts of cyanuric chloride (1.48 g, 8 mmol) and 1,3,5-triphenylbenzene (2.45 g, 8 mmol) in dichloromethane (DCM; 100 mL). The solution was kept at 20 °C and anhydrous aluminium chloride (3.00 g, 24 mmol) was added slowly. The reaction mixture was fitted with a condenser and heated to 70 °C under reflux for 16 h. After the reaction was complete, the resulting mixture was cooled to room temperature and a solid brownish black precipitate was collected by simple filtration, washed with DCM, methanol and water several times to completely remove the unreacted starting precursors. Finally, the brownish black solid was dried in a vacuum for 6 h to obtain the solvent free material in 88% yield.

#### 1.5 Synthesis of MCTP-2 network

The synthesis of MCTP-2 was similar to that of MCTP-1 except that *trans*-stilbene (2.16 g, 12 mmol) was used instead of 1,3,5-triphenylbenzene. A brown color solid powder was obtained in 92% yield.

## 2. Characterization data

| Delaureeure | Found (%) |      |       | Calculated (%) |      |       |
|-------------|-----------|------|-------|----------------|------|-------|
| Polymers    | С         | H    | Ν     | С              | Н    | Ν     |
| CTP-1       | 77.78     | 4.53 | 9.92  | 85.02          | 3.96 | 11.02 |
| CTP-2       | 76.93     | 4.87 | 10.28 | 83.46          | 4.38 | 12.17 |

Table S1. Elemental analysis data of MCTP-1 and MCTP-2 networks



Fig. S1. FT-IR spectra of MCTP-1 and MCTP-2



Fig. S2. Powder XRD pattern of MCTP-1



Fig. S3. Powder XRD pattern of MCTP-2



Fig. S4. SEM image of MCTP-1 (a) and MCTP-2 (b)



Fig. S5. TGA spectra of MCTP-1 and MCTP-2



**Fig. S6.** CO<sub>2</sub> adsorption isosteres at temperature ranging from 273 K to 303 K on (a) MCTP-1 and (b) MCTP-2 with the corresponding amount adsorbed



Fig. S7. CO<sub>2</sub> adsorption-desorption cycles obtained for the MCTP-1 at 27 °C



Fig. S8.  $CO_2$  adsorption-desorption cycles obtained for the MCTP-2 at 27 °C



**Fig. S9.** CO<sub>2</sub> adsorption (solid square) - desorption (empty square) isotherm of MCTP-1 (a) and MCTP-2 (b) at 298 K/1 bar



Fig. S10. Initial slope calculation of the  $CO_2/N_2$  adsorption selectivity for MCTP-1 (a) and MCTP-2 (b) at 298 K/1 bar



**Fig. S11.** Initial slope calculation of the CO<sub>2</sub>/CH<sub>4</sub> adsorption selectivity for MCTP-1 (a) and MCTP-2 (b) at 298 K/1 bar

**Table S2.** Comparison of the  $CO_2$  uptakes capacities of some previously reported POPs at 1 bar

| DUD    | <b>BET surface</b>                     | CO <sub>2</sub> uptakes a | Doforonaos |            |
|--------|----------------------------------------|---------------------------|------------|------------|
| 1015   | area (m <sup>2</sup> g <sup>-1</sup> ) | 273K                      | 298K       | Kelefences |
| POF-1B | 773                                    | ~186                      | ~90        |            |
| POF-2B | 917                                    | ~155                      | ~75        | 1          |
| POF-3B | 608                                    | ~125                      | ~65        |            |
| MPN-P1 | 99                                     | 82.1                      | 63         | 2          |
| MPN-P2 | 56                                     | 57.6                      | 41         | 2          |

| MPN-P3                                | 50   | 56.2 | 38  |     |
|---------------------------------------|------|------|-----|-----|
| NPAF                                  | 1790 | 152  | 102 | 3   |
| NPC-700                               | 1876 | 189  | 108 | 4   |
| NPC-750                               | 3195 | 187  | 95  | 4   |
| CMP-1                                 | 837  | ~90  | 52  |     |
| CMP-1-NH <sub>2</sub>                 | 710  | ~72  | ~43 |     |
| CMP-1-COOH                            | 522  | 70   | ~43 | 5   |
| CMP-1-(CH <sub>3</sub> ) <sub>2</sub> | 899  | ~72  | 41  |     |
| CMP-1-(OH) <sub>2</sub>               | 1043 | ~80  | 47  |     |
| BLP-1H                                | 1360 | ~74  | ~41 |     |
| BLP-12H                               | 2244 | ~128 | ~79 | 6   |
| MOP-A                                 | 4077 | 117  | 64  |     |
| MOP-B                                 | 1847 | 145  | 72  |     |
| MOP-C                                 | 1237 | 170  | 97  |     |
| MOP-D                                 | 1213 | 106  | 59  | 7   |
| MOP-E                                 | 1470 | 130  | 78  |     |
| MOP-F                                 | 653  | 79   | 48  |     |
| MOP-G                                 | 1056 | 95   | 55  |     |
| FOF-1                                 | 830  | 77   |     |     |
| FOF-2                                 | 96   | 17   | -   | 0   |
| FOF-3                                 | 307  | 21   |     | 8   |
| FOF-4                                 | 571  | 64   |     |     |
| ACMP-C                                | 629  | 68.8 | 48  |     |
| ACMP-C6                               | 380  | 36   | 25  | 9   |
| ACMP-N                                | 46   | 52   | 36  |     |
| MPI-1                                 | 1454 | ~165 | ~97 |     |
| MPI-2                                 | 814  | ~138 | ~95 | 10  |
| MPI-3                                 | 586  | ~100 | ~74 |     |
| POP-diimide                           | 960  | 177  | 88  | 11  |
| APOP-1                                | 1298 | 187  | 118 |     |
| APOP-1-OH                             | 875  | 131  | 82  |     |
| APOP-1-ONa                            | 760  | 131  | 75  |     |
| APOP-1-F                              | 724  | 135  | 89  | 12  |
| APOP-2                                | 906  | 100  | 57  |     |
| APOP-3                                | 1402 | 196  | 113 |     |
| APOP-4                                | 833  | 119  | 72  |     |
| BILP-1                                | 1172 | 188  | 131 | 13  |
| azo-COP-1                             | 635  | 107  | 65  |     |
| azo-COP-2                             | 729  | 112  | 67  | 14  |
| azo-COP-3                             | 493  | 85   | 54  |     |
| PPN-6                                 | 4023 | 87   | 66  | 15  |
| HCP-1                                 | 1646 | 132  | 75  | 1.6 |
| HCP-2                                 | 1684 | 145  | 75  | 16  |

| HCP-3                                                                                | 1531 | 143 | 71  |                 |  |  |
|--------------------------------------------------------------------------------------|------|-----|-----|-----------------|--|--|
| HCP-4                                                                                | 1642 | 172 | 71  |                 |  |  |
| MOP A-B1                                                                             | 378  | 117 | 88  |                 |  |  |
| MOP A-B2                                                                             | 614  | 119 | 84  | 17              |  |  |
| MOP A-B3                                                                             | 589  | 99  | 75  |                 |  |  |
| HMP Th-1                                                                             | 726  | 127 | 75  |                 |  |  |
| HMP Py-1                                                                             | 437  | 119 | 75  | 18              |  |  |
| HMP Fu-1                                                                             | 514  | 97  | 62  |                 |  |  |
| JUC-Z2                                                                               | 2034 | 141 | 70  | 19              |  |  |
| PAF-1                                                                                | 5460 | 91  | 48  |                 |  |  |
| PAF-3                                                                                | 2932 | 154 | 81  | 20              |  |  |
| PAF-4                                                                                | 2246 | 107 | 51  |                 |  |  |
| NPOF-4                                                                               | 1249 | 110 | 62  |                 |  |  |
| NPOF-4-NO <sub>2</sub>                                                               | 337  | 106 | 69  | 21              |  |  |
| NPOF-4-NH <sub>2</sub>                                                               | 554  | 128 | 83  |                 |  |  |
| BLP-10-Cl                                                                            | 924  | 119 | 62  | 22              |  |  |
| PI-1                                                                                 | 506  | 88  | 62  | 22              |  |  |
| PI-2                                                                                 | 568  | 66  | 44  | 23              |  |  |
| SMPI-0                                                                               | 574  | 111 | 63  |                 |  |  |
| SMPI-10                                                                              | 112  | 139 | 82  | 24              |  |  |
| SMPI-50                                                                              | 44   | 130 | 71  | 24              |  |  |
| SMPI-100                                                                             | 23   | 124 | 82  |                 |  |  |
| MCTP-1                                                                               | 1452 | 204 | 119 | Prosont work    |  |  |
| MCTP-2                                                                               | 859  | 161 | 108 | I I CSCIIL WUIK |  |  |
| Porous organic frameworks (POFs): microporous polymers networks (MPN): nitrogen rich |      |     |     |                 |  |  |

Porous organic frameworks (POFs); microporous polymers networks (MPN); nitrogen rich porus aromatic framework (NPAF); nitrogen doped porous carbons (NPCs); conjugated microporous polymer (CMP); borazine-linked polymers (BLPs); micorporous organic polymers (MOPs); Furan-based imine-linkage porous organic frameworks (FOFs); acetylene gas mediated conjugated microporous polymers (ACMPs); microporous polyimides (MPI); aminal-linked porous organic polymers (APOPs); Benzimidazole-Linked Polymer (BILPs); covalent organic polymers (COPs); porous polymer networks (PPN); hyper cross-linked polyemrs (HCPs); hypercrosslinked aromatic heterocyclic microporous polymers (HMPs); porous aromatic frameworks (PAFs); nanoporous organic frameworks (NPOF); series of novel microporous polyimides (SMPI).

**Table S3.** Comparison of the  $CH_4/CO_2$  uptakes capacities of some previously reported MOFs at 298 K/35 bar

| Chemical Formula                                      | Common<br>name | CH4<br>Uptakes<br>(mg/g) | CO <sub>2</sub><br>Uptakes<br>(mg/g) | Pressure<br>(bar) | Ref. |
|-------------------------------------------------------|----------------|--------------------------|--------------------------------------|-------------------|------|
| Cd(bpydb)                                             |                | 61.4                     | -                                    | 35                | 25   |
| Cd(azpy) <sub>3</sub> (NO <sub>3</sub> ) <sub>4</sub> |                | 30.7                     | -                                    | 36.5              | 26   |

| CO <sub>2</sub> (4,4'-bpy) <sub>3</sub> (NO <sub>3</sub> ) <sub>4</sub>                                                                      |                 | 38.6 | -    | 35   | 27      |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|------|------|---------|
| $Co_2(ndc)_2(dabco)$                                                                                                                         | DUT-8           | 55.7 | -    | 35   | 28      |
|                                                                                                                                              | (Co)            |      |      |      |         |
| $Zn_2(ndc)_2(dabco)$                                                                                                                         | DUT-8           | 42.1 | -    | 35   | 28      |
|                                                                                                                                              | (Zn)            |      |      |      |         |
| Cu <sub>2</sub> (PF6)(NO <sub>3</sub> )(4,4'-                                                                                                |                 | 22.1 | -    | 36.5 | 29      |
| bpy) <sub>4</sub> .1.4PF <sub>6</sub> .0.6NO <sub>3</sub>                                                                                    |                 |      |      |      |         |
| Zn <sub>2</sub> (tcpbda)                                                                                                                     | SNU-30          | 50.7 | -    | 35   | 30      |
| Co(azpy) <sub>2</sub> (NCS) <sub>2</sub>                                                                                                     |                 | 10.7 | -    | 35.5 | 31      |
| $Co_2(azpy)_3(NO_3)_4$                                                                                                                       |                 | 9.3  | -    | 36.5 |         |
| Zn <sub>2</sub> (tcpbda)(bpta)                                                                                                               | SNU-31          | 26.4 | -    | 35   | 30      |
| $Cu(C_4H_2O_4)(ted)_{0.5}$                                                                                                                   |                 | 73.6 | -    | 35   | 32      |
| $Cu(dhbc)_2(4,4' -bpy)$                                                                                                                      | AX-21           | 50.0 |      | 35   | 33      |
|                                                                                                                                              | activated       | 50.0 | -    | 55   | 55      |
| Na <sub>86</sub> [(AlO <sub>2</sub> ) <sub>86</sub> (SiO <sub>2</sub> ) <sub>106</sub> ]                                                     | Zeolite         | 52.0 |      | 25.5 |         |
|                                                                                                                                              | NaX             | 52.9 | -    | 55.5 | 34      |
| $Na_{12}[(AlO_2)_{12}(SiO_2)_{12}]$                                                                                                          | Zeolite 5A      | 50.0 | -    | 35.5 |         |
| Zn <sub>2</sub> (BDC) <sub>2</sub>                                                                                                           | MOF-2           | -    | 141  | 36.2 |         |
|                                                                                                                                              | Norit RB2       | -    | 421  | 36.2 |         |
| $[Cu_2(bptc)(H_2O)_2(dmf)_3(H_2O)]$                                                                                                          | MOF-505         | -    | 449  | 34   | 35      |
| $Zn_2(C_8H_2O_6)$                                                                                                                            | MOF-74          | -    | 455  | 34.1 | -       |
| Cu <sub>3</sub> (BTC) <sub>2</sub>                                                                                                           |                 | -    | 470  | 34.1 | -       |
| $Cu_3(C_9H_6O_6)_2$                                                                                                                          | MOF-199         | -    | 404  | 25.8 | 36      |
| Na <sub>86</sub> (AlO <sub>2</sub> ) <sub>86</sub> (SiO <sub>2</sub> ) <sub>106</sub>                                                        | NaX             | -    | ~286 | 35   |         |
| $Zr_6O_4(OH)_4(BDC)_6(DMF)_2(H_2O)_2$                                                                                                        | UiO-            |      | 200  | 25   | -       |
|                                                                                                                                              | 66(Zr)          | -    | ~308 | 35   |         |
| $Zr_6O_4(OH)_4(NH_2-$                                                                                                                        | UiO-            |      |      |      | -       |
| $BDC)_6(DMF)_2(H_2O)_2$                                                                                                                      | 66(Zr)-         | -    | ~352 | 35   | 27      |
|                                                                                                                                              | NH <sub>2</sub> |      |      |      | 37      |
|                                                                                                                                              | Takeda 5A       | _    | ~440 | 35   | -       |
| Ti <sub>8</sub> O <sub>8</sub> (OH) <sub>4</sub> (C <sub>6</sub> H <sub>3</sub> C <sub>2</sub> O <sub>4</sub> NH <sub>2</sub> ) <sub>6</sub> | MIL-            |      |      |      |         |
|                                                                                                                                              | 125(Ti)-        | -    | ~440 | 35   |         |
|                                                                                                                                              | NH <sub>2</sub> |      |      |      |         |
| MCTP-1                                                                                                                                       | _               | 85   | 497  | 25   | Present |
| MCTP-2                                                                                                                                       |                 | 50   | 333  | 35   | work    |

(EBTC = 1,1' -ethynebenzene-3,3',5,5' -tetracarboxylate; G = guest molecule); azpy = 4,4'azopyridine; 4,4'-bpy = 4,4'-bipyridine; bpydb = 4,4'-(4,4'-bipyridine-2,6-diyl)dibenzoate; bte = 4,4',4"-[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate; dabco = 1,4-diazabicyclo-[2.2.2]octane; dhbc = 2,5-dihydroxybenzoate; ndc = 2,6-naphthalenedicarboxylate; cpbda = N, N, N', N' -tetrakis(4-carboxylphenyl)biphenyl-4,4'-diamine; ted = triethylenediamine; BDC = 1,4-benzenedicarboxylate; BTC = 1,3,5-tribenzene carboxylate; bptc = biphenyl-3,3',5,5'tetracarboxylic acid.

#### 3. References

- 1. A. P. Katsoulidis and M. G. Kanatzidis, Chem. Mater., 2011, 23, 1818.
- Y.-Q. Shi, J. Zhu, X.-Q. Liu, J.-C. Geng and L.-B. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 20340.
- D. Demirocak, M. K. Ram, S. S. Srinivasan, D. Y. Goswami and E. K. Stefanakos, J. Mater. Chem., A, 2013, 1, 13800.
- 4. J. Wang, I. Senkovska, M. Oschatz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liu and S. Kaskel, *J. Mater. Chem.*, *A*, 2013, **1**, 10951.
- 5. R. Dawson, D. J. Adams and A. I. Cooper, Chem. Sci., 2011, 2, 1173.
- K. T. Jackson, M. G. Rabbani, T. E. Reich and H. M. El-Kaderi, *Polym. Chem.*, 2011, 2, 2775.
- R. Dawson, E. Stockel, J. R. Holst, D. J. Adams and A. I. Cooper, *Energy Environ*. Sci., 2011, 4, 4239.
- 8. J. Ma, M. Wang, Z. Du, C. Chen, J. Gao and J. Xu, Polym. Chem., 2012, 3, 2346.
- J. H. Choi, K. M. Choi, H. J. Jeon, Y. J. Choi, Y. Lee and J. K. Kang, Macromolecules, 2010, 43, 5508.
- 10. G. Li and Z. Wang, Macromolecules, 2013, 46, 3058.
- O. K. Farha, Y.-S. Bae, B. G. Hauser, A. M. Spokoyny, R. Q. Snurr, C. A. Mirkin and J. T. Hupp, *Chem. Commun.*, 2010, 46, 1056.
- W.-C. Song, X.-K. Xu, Q. Chen, Z.-Z. Zhuang and X.-H. Bu, *Polym. Chem.*, 2013, 4, 4690.
- 13. M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2011, 23, 1650.
- 14. H. A. Patel, S. Hyun Je, J. Park, D. P. Chen, Y. Jung, C. T. Yavuz and A. Coskun, *Nat. Commun.*, 2013, 4, 1357.
- W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna and H.-C. Zhou, J. Am. Chem. Soc., 2011, 133, 18126.
- 16. C. F. Martin, E. Stockel, R. Clowes, D. J. Adams, A. I. Cooper, J. J. Pis, F. Rubiera and C. Pevida, J. Mater. Chem., 2011, 21, 5475.
- 17. C. Xu and N. Hedin, J. Mater. Chem., A, 2013, 1, 3406.
- 18. Y. Luo, B. Li, W. Wang, K. Wu and B. Tan, Adv. Mater., 2012, 24, 5703.
- 19. C. Pei, T. Ben, Y. Cui and S. Qiu, Adsorption, 2012, 18, 375.
- T. Ben, C. Pei, D. Zhang, J. Xu, F. Deng, X. Jing and S. Qiu, *Energy Environ. Sci.*, 2011, 4, 3991.

- T. Islamoglu, M. Gulam Rabbani and H. M. El-Kaderi, J. Mater. Chem., A, 2013, 1, 10259.
- 22. T. E. Reich, S. Behera, K. T. Jackson, P. Jena and H. M. El-Kaderi, *J. Mater. Chem.*, 2012, **22**, 13524.
- A. Laybourn, R. Dawson, R. Clowes, J. A. Iggo, A. I. Cooper, Y. Z. Khimyak and D. J. Adams, *Polym. Chem.*, 2012, 3, 533.
- 24. Y. Yang, Q. Zhang, Z. Zhang and S. Zhang, J. Mater. Chem., A, 2013, 1, 10368.
- M. K. Sharma, I. Senkovska, S. Kaskel and P. K. Bharadwaj, *Inorg. Chem.*, 2011, 50, 539.
- 26. M. Konda, M. Shimamure, S. Noro, S. Minakoshi, A. Asami, K. Seki and S. Kitagawa, *Chem. Mater.*, 2000, **12**, 1288.
- M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka and S. Kitagawa, Angew. Chem., Int., Ed. Engl., 1997, 36, 1725.
- N. Klein, H. C. Hoffmann, A. Cadiau, J. Getzschmann, M. R. Lohe, S. Paasch, T. Heydenreich, K. Adil, I. Senkovska, E. Brunner and S. Kaskel, *J. Mater. Chem.*, 2012, 22, 10303.
- 29. S. Noro, R. Kitaura, M. Kondo, S. Kitagawa, T. Ishii, H. Matsuzaka and M. Yamashita, J. Am. Chem. Soc., 2002, 124, 2568.
- 30. H. J. Park, Y. E. Cheon and M. P. Suh, Chem.-Eur. J., 2010, 16, 11662.
- M. Konda, M. Shimamure, S. Noro, S. Minakoshi, A. Asami, K. Seki and S. Kitagawa, *Chem. Mater.*, 2000, 12, 1288.
- 32. K. Seki and W. Mori, J. Phys. Chem., B, 2002, 106, 1380.
- R. Kitaura, K. Seki, G. Akiyama and S. Kitagawa, *Angew. Chem., Int. Ed.*, 2003, 42, 428.
- 34. (a) P. D. Rolniak and R. Kobayashi, *AIChE J.*, 1980, 26, 616; (b) Q. H. Dirar and K. F. Loughlin, *Adsorption*, 2013, 19, 1149.
- 35. A. R. Millward and O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 17998.
- T. V. N. Thi, C. L. Luu, T. C. Hoang, T. Nguyen, T. H. Bui, P. H. D. Nguyen and T. P. P. Thi, *Adv. Nat. Sci.: Nanosci. Nanotechnol.*, 2013, 4, 035016.
- 37. A. D. Wiersum, J.-S. Chang, C. Serre and P. L. Llewellyn, *Langmuir*, 2013, 29, 3301.