
Supplementary material

Vertical and lateral morphology effects on solar cell performance for a thiophenequinoxaline copolymer:PC₇₀BM blend.

Rickard Hansson,^a Leif Ericsson,^a Natalie P. Holmes,^b Jakub Rysz,^c Andreas Opitz,^d Mariano Campoy-Quiles,^e Ergang Wang,^f Matthew G. Barr,^b A. L. David Kilcoyne,^g Xiaojing Zhou,^b Paul Dastoor^b and Ellen Moons^a

^aDepartment of Engineering and Physics, Karlstad University, 65188 Karlstad, Sweden
^bCentre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308, Australia
^cInstitute of Physics, Jagiellonian University, 30-059 Kraków, Poland
^dDepartment of Physics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
^eInstitut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain
^fDepartment of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
^gAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Figure S1. C1s NEXAFS spectrum measured at 55° on a 1:3 w/w TQ1:PC₇₀BM blend film from CB, measured in TEY mode together with the best fit and the residual. Shown below are the fitted components extracted from the fit.

Interpretation of the m/q = 26 d-SIMS depth profile

The secondary ions with m/q = 32 can exclusively be assigned to S⁻ from TQ1. The secondary ions with m/q = 26, can however, apart from the main assignment to CN⁻ from TQ1, also be assigned to $C_2H_2^-$ ions, which can originate both from the polymer and the fullerene. Therefore the m/q = 26 profile is strictly speaking a mixed signal that originates from both components in the blend. (This is apparent from our observation that the m/q = 26 signal is present also in the PS layer despite there being no nitrogen in PS.) However, since CN⁻ ions can only originate from TQ1 and assuming that the $C_2H_2^-$ part of the signal is contributed from TQ1 and PC₇₀BM in a constant ratio, this signal should also show how the TQ1 concentration varies through the film. If this assumption is correct, any changes in the m/q = 26 signal are due to changes in the TQ1 concentration. This is indeed supported by the fact that the depth profiles for m/q = 32 and m/q = 26 have very similar shapes throughout the active layer for all the blend films. Therefore, in the active layer, we can confidently interpret both the signals from m/q = 26 and m/q = 32 as markers for TQ1 concentration.