Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

TiO₂ Enhanced Ultraviolet Detection Based on Graphene/Si Schottky Diode

Miao Zhu,^{ab} Li Zhang,^a Xinming Li,^c Yijia He,^{ab} Xiao Li,^a Fengmei Guo,^a Xiaobei

Zang,^a Kunlin Wang,^a Dan Xie,^d Xuanhua Li,^e Bingqing Wei,^{e,f} and Hongwei Zhu^{ab}

^aSchool of Materials Science and Engineering, State Key Laboratory of New

Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China

^bCenter for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China

^cNational Center for Nanoscience and Technology, Zhongguancun, Beijing 100190,

China

^dTsinghua National Laboratory for Information Science and Technology

(TNList), Institute of Microelectronics, Tsinghua University, Beijing 100084,

China

^eSchool of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China

^fDepartment of Mechanical Engineering, University of Delaware, Newark, DE 19716,

Figure S1. Transmittance of graphene. The transmittance is about 86.9% at 550 nm, corresponding to a thickness of ~ 2 nm (the number of layers is ~ 6).

Figure S2. XPS of as-prepared graphene (on Si substrate). The contents of metallic impurities (*e.g.*, Fe, Cu) in graphene are quite low.

Figure S3. *I-V* characteristics of the device before and after TiO_2 coating, tested at 350 nm incident light.

Figure S4. Response repeatability of the switching behavior of TiO₂/graphene/Si device in 10 min.

Figure S5. (a) Response and (b) recovery of the $TiO_2/graphene/Si$ device. The response and recovery times are confirmed as the time interval from 10% to 90% (90% to 10%) of its peak value.^{1,2}

Figure S6. Relative change of the response current versus the thickness of TiO₂ layer.

The thickness of the TiO_2 layer was tuned by repeatedly spin-coating the TiO_2 NPs on a same device. An ultraviolet source with stronger intensity was used to guarantee enough photons penetrate the TiO_2 layer and therefore enable investigation for a wider range of thicknesses of the TiO_2 layers. The response current increased along with the thickness of TiO_2 at beginning, after a stable region, the response decayed and then sharply decreased to the level of dark current. One possible reason was that thick TiO_2 layer within certain range may provide more excitons beneficial to reduce the tunneling recombination of the charge layers. Thicker TiO_2 layer might lead to severe energy loss of the incident ultraviolet, therefore resulted in negative effects.

References:

[1] D. Wu, Y. Jiang, Y. Zhang, J. Li, Y. Yu, Y. Zhang, Z. Zhu, L. Wang, C. Wu, L. Luo and J. Jie, *J. Mater. Chem.*, 2012, **22**, 6206.

[2] P. Wu, Y. Dai, T. Sun, Y. Ye, H. Meng, X. Fang, B. Yu and L. Dai, *ACS Appl. Mater. Interfaces*, 2011, **3**, 1859.