Supplementary Information

Solution-processed boron subphthalocyanine derivatives as acceptors for organic bulkheterojunction solar cells

Bernd Ebenhoch,^a Nor B. A. Prasetya,^b Vincent M. Rotello,^c Graeme Cooke,^{b*} Ifor D. W. Samuel^{a*}

^{a.} Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK

^{b.} Glasgow Centre for Physical Organic Chemistry, WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK

^{c.} Department of Chemistry, University of Massachusetts Amherst, 710 Nt. Pleasant Street, Amherst, MA 01003, USA

* Corresponding authors: GC: graeme.cooke@glasgow.ac.uk, IDWS: idws@st-andrews.ac.uk

Fig. S1 shows the cyclic voltammetry of compound **1** and **2**. The square wave derived potentials for the HOMO and LUMO values are given in the main text.

Fig. S1 Cyclic voltammetry of compound 1 and 2.

Fig. S2 shows the spatial distribution of the HOMO and LUMO of compounds **1** and **2** calculated by density functional theory (B3LYP/6-31G*), using the Spartan '14 (64-bit) software suite.

Fig. S2 DFT modelled structures of 1 (a) and 2 (b) showing LUMO (top) and HOMO (bottom) maps.

Fig. S3 shows crystalline structures as grown in spin coated films of compound **1** and an undissolved crystal.

Fig. S3 Optical microscopy image showing the crystalline structures found in films spin -coated from compound **1**.

Fig. S4 shows a measurement of charge extraction by linearly increasing voltage (CELIV) on P3HT:**2**. P3HT has the advantage that it contains intrinsic charge carriers which can be extracted by a linear voltage ramp.¹ The figure shows a clear charge extraction peak from which the mobility of the blend can be determined. At a voltage ramp of 33 kV/s, the mobility of majority charge carriers amounts to 9 x 10⁻⁶ cm²/Vs. This suggests a reduced mobility compared to fullerene acceptors, where the CELIV mobility is of typically $1 \times 10^{-3} \text{ cm}^2/\text{Vs.}^{2,3}$

Fig. S4 Dark CELIV current transient of P3HT:2 (1:3) at a voltage ramp of 33 kV/s. The mobility of 9×10^{-6} cm2/Vs is obtained from the peak charge extraction and the film thickness of 38 nm.

Fig. S5 shows the device parameters of PTB7:**2** solar cells for various annealing conditions. The efficiency forms a clear maximum for a temperature of 160 °C and duration of 10 minutes, which agrees with the overall trend of short circuit current density (J_{sc}), open circuit voltage (V_{oc}) and fill factor (FF).

Fig. S5 Normalized device parameters of PTB7:2 solar cells for varying annealing duration at 160 °C.

Table 1 shows the device properties of solar cells based on MEH-PPV, P3HT and PTB7. The properties shown are an average of working pixels on each substrate. For some devices configurations further device optimisation is possible.

Blend	Ratio	Solution	DIO	Annealing	Thickness	PCE	JSC	voc	FF
					(nm)	(%)	(mA/cm2)	(mV)	(%)
MEH-PPV: 1	1:5	13 mg/ml Tol	-	160 °C, 10 min.	89 ± 30	0.04	0.5	340	27
MEH-PPV: 2	1:3	11 mg/ml Tol	-	160 °C, 10 min.	50 ± 14	0.42	1.60	910	29
P3HT: 1	1:2	20 mg/ml DCB	-	120 °C, 20 min.	55 ± 4	0.15	1.67	280	32
P3HT: 2	1:3	20 mg/ml DCB	_	120 °C, 20 min.	38 ± 3	1.09	4.31	590	43
PTB7: 1	1:1.5	20 mg/ml DCB	2 %	160 °C, 10 min.	52 ± 11	1.88	6.0	776	40
PTB7: 2	1:1.5	20 mg/ml DCB	1%	160 °C, 10 min.	41 ± 4	3.51	7.8	935	48
PTB7:PC ₇₁ BM	1:1.5	20 mg/ml DCB	3 %	_	63 ± 4	7.10	13.3	768	70

Table 1Summary of device properties of solar cells comprising SubPC acceptor 1 and 2. (Tol = Toluene,
DCB = 1,2-Dichlorobenzene)

Fig. S6 shows the collapsed JV-curves of PTB7:**1** and PTB7:**2** solar cells for varying light intensity. The curves were normalized at -0.5 V to a value of -1. The spread at short circuit can be attributed to trap-assisted recombination and the spread at open circuit to bimolecular recombination.^{4,5} For PTB7:**1** stronger trap-assisted recombination is observed compared to PTB7:**2**. The normalized JV-curves of PTB7:**1** reveal a crossing point at about 0.6 V, this is an indication of strong trap-assisted recombination and can be an origin of reduced open circuit voltage.

Fig. S6 a) Collapsed JV-curves of optimized devices with varying light intensity of PTB7:**1** and b) PTB7:**2**. The curves are normalized at -0.5 V.

Fig. S7 shows excitation scans of a blend of PTB7:2 at the prominent emission peaks at 800 nm and 650 nm. The curves are in good agreement with the absorption spectra of PTB7 and compound **2** respectively. This clearly assigns the contribution from PTB7 to the 800 nm emission and compound **2** to the emission at 650 nm.

Fig. S7 a) Excitation scan of a PTB7:2 blend film with emission at 800 nm compared to an absorption spectrum of PTB7. b) Excitation scan at 650 nm emission compared to the absorption spectrum of compound **2**.

Fig. S8 shows tapping mode AFM images of PTB7:**1** and PTB7:**2**. Films of PTB7:**2** have a slightly finer intermixed layer, which can result in better exciton dissociation.

Fig. S8 a) Image of tapping mode atomic force microscopy of PTB7:1 and b) PTB7:2

References

A. Mozer, N. Sariciftci, A. Pivrikas, R. Österbacka, G. Juška, L. Brassat and H. Bässler, *Physical Review B*, 2005, **71**, 035214.

- 2 J. Schafferhans, A. Baumann, A. Wagenpfahl, C. Deibel and V. Dyakonov, *Organic Electronics*, 2010, **11**, 1693–1700.
- 3 E. Voroshazi, K. Vasseur, T. Aernouts, P. Heremans, A. Baumann, C. Deibel, X. Xue, A. J. Herring, A. J. Athans, T. A. Lada, H. Richter and B. P. Rand, *Journal of Materials Chemistry*, 2011, **21**, 17345-17352.
- 4 S. R. Cowan, A. Roy and A. J. Heeger, *Physical Review B*, 2010, **82**, 245207
- 5 A. K. K. Kyaw, D. H. Wang, V. Gupta, W. L. Leong, L. Ke, G. C. Bazan and A. J. Heeger, *ACS Nano*, 2013, **7**, 4569–4577.