Supplementary Information

Interfacial architectures based on binary additive combination for high-performance Sn₄P₃ anodes in sodium-ion batteries

Jun Yeong Jang,^a Yongwon Lee,^a Youngjin Kim,^b Jeongmin Lee,^a Sang-Min Lee,^c Kyu Tae Lee, ^{*b} and Nam-Soon Choi^{*a}

 ^a School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan, 689-798, South Korea E-mail: ktlee@unist.ac.kr and nschoi@unist.ac.kr
 ^b School of Chemical and Biological Engineering, Seoul National University 599 Gwanangno, Gwanak-gu, Seoul 151-744, South Korea
 ^c Battery Research Center, Korea Electrotechnology Research Institute, 12 Bulmosan-ro 10 beon-gil, Changwon 642-120, South Korea

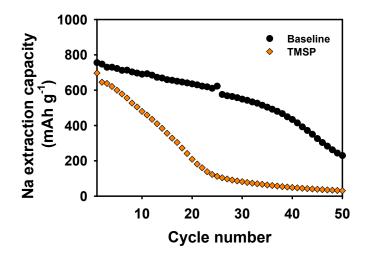


Fig. S1. Comparison of cycling performance of the Sn_4P_3 anodes with and without TMSP additive at a rate of C/10.

	$R_{e}(\Omega)$	$\mathrm{R_{f}}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	Total (Ω)
Baseline	0.29	50.5	20	71.79
FEC	0.6	125	49	174.6
FEC+TMSP	0.25	91	14	104.3

Table S1. Impedance parameters obtained from the simulation