Supporting information

Figure S1: Morphology of low carbon-content reference sample (a, b) and the carbon-coated reference sample (c, d). (a) The low-magnification TEM image indicates the particle size of the sample is about $3\sim5$ µm. (b) The high-magnification image for the red square of (a) demonstrates the solid nature of the material. (c) The low-magnification TEM image indicates the particle size of the carbon coated sample is about $3\sim5$ µm. (d) The high-magnification image for the red square of (c) demonstrates the existence of surface carbon layer and solid nature of the material.

Figure S2: Linear behavior of the transient voltage changes (*E*) vs. $(\tau^{1/2})$ during the titration process demonstrates the validity of simplified equation (2) in our study.

Figure S3: Cycling properties of the honeycomb-structured microball and the microsized nanoporous sample at the 20 *C* rate.

Atom	Wyckoff site	x	у	Z
Na1	6b	0	0	0
Na2	18e	0.6403	0	1/4
V	12c	0	0	0.1476
Р	18e	0.2864	0	1/4
O1	36f	0.1783	0.9622	0.1912
O2	36f	0.1910	0.1631	0.0843

Table S1: Atomic parameters of carbon coated reference sample refined from the XRD data. (a=8.7211(3) Å, c=21.8126(2) Å)

Table S2: Atomic parameters of low carbon-content reference sample refined from the XRD data. (a=8.7190(4) Å, c=21.8112(3) Å)

Atom	Wyckoff site	x	У	z
Na1	6b	0	0	0
Na2	18e	0.6359	0	1/4
V	12c	0	0	0.1472
Р	18e	0.2850	0	1/4
01	36f	0.1791	0.9661	0.1904
O2	36f	0.1918	0.1654	0.0834