Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supplementary Information for

CN Foam Loaded with Few-layer Graphene Nanosheets for High-performance Supercapacitor Electrode

Guoxing Zhu,^{a,c,*} Chunyan Xi,^a Yuanjun Liu,^b Jun Zhu,^a and Xiaoping Shen^{a,*}

^aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China, Fax: (+86)511-88791800; Tel: (+86)511-88791800; E-mail: <u>zhuguoxing@ujs.edu.cn;</u> <u>xiaopingshen@163.com.</u>

^bSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, P. R. China.

^cState Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, 210093, P. R. China.

Fig. SI-1 Current-voltage curves measured on pristine CN and CN-RGO-90 foams with the same size. The inset shows the measure illustration. It can be seen that with the same voltage, CN-RGO-90 foam show much higher current, suggesting its high conductivity.

Fig. SI-2 FT-IR spectrum for graphite oxide (GO).

Fig. SI-3 Raman spectra of pristine CN foam (300 °C), CN-RGO-90 and GO.

Fig. SI-4 Detailed XPS spectra for C 1s: a) pristine CN foam (300 °C) and b) pure RGO (300 °C).

Fig. SI-5 Detailed XPS spectra for N 1s: a) CN-RGO-90 and b) pristine CN foam (300 °C).

Fig. SI-6 Detailed XPS spectra for O 1s: a) CN-RGO-90, b) pristine CN foam (300 °C), and c) pure RGO (300 °C).

Samples	Annealing temperature	Composition calculated from element analysis	Composition calculated from XPS results
CN-RGO-6	300 °C	CN _{1.01} O _{0.14}	
CN-RGO-30	300 °C	$CN_{1.05}O_{0.16}$	
CN-RGO-60	300 °C	CN _{0.79} O _{0.22}	
CN-RGO-90	300 °C	$CN_{0.61}O_{0.26}$	CN _{0.356} O _{0.236}
CN-RGO-90/500	500 °C	CN _{0.34} O _{0.015}	
CN-RGO-90/750	750 °C	$CN_{0.12}O_{0.006}$	
CN foam	300 °C	$CN_{1.04}O_{0.1}$	
CN foam	500 °C	$CN_{0.71}O_{0.1}$	
CN foam	750 °C	CN _{0.33} O _{0.02}	
RGO	300 °C	CO _{0.009}	
RGO	500 °C	CO _{0.004}	
RGO	750 °C	CO _{0.002}	
GO	/	CO _{0.92}	

Table SI-1 Element analysis and XPS quantity analysis results for the prepared samples.