Supporting Information

Novel Understanding of Carbothermal Reduction Enhancing Electronic and Ionic Conductivity of Li₄Ti₅O₁₂ Anode

Bo Yan,^{a, b, c} Minsi Li,^d Xifei Li,*^b Zhimin Bai,*^a Jianwen Yang,*^c Dongbin Xiong,^b

Dejun Li^b

^aBeijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083. E-mail: zhimibai@cugb.edu.cn; Tel: +86-13691115187

^bEnergy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China. E-mail: <u>xfli2011@hotmail.com</u>; Tel: +86-22-23766526, Fax: +86-22-23766503

^cCollege of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China. E-mail: yangjw@glite.edu.cn; Tel: +86-773-5896446

^dCAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Anhui, Hefei 230026, P. R. China

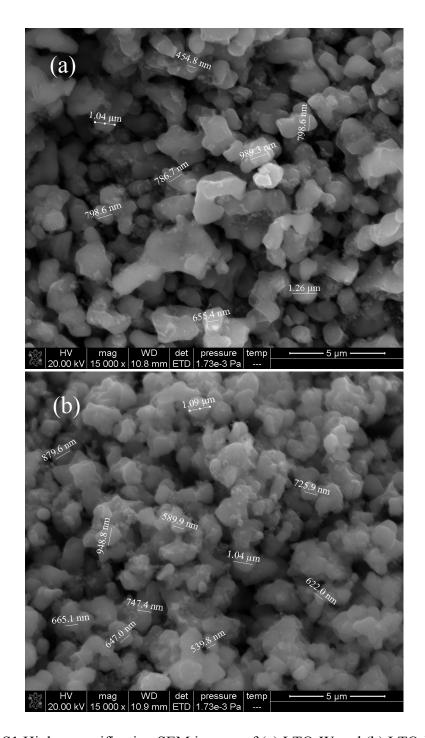


Fig. S1 High- magnification SEM images of (a) LTO-W and (b) LTO-B.