Supporting Information

Rational Design of Mesoporous NiFe-alloy-based Hybrids for Oxygen

Conversion Electrocatalysts

Suqin Ci,[‡] Shun Mao,[‡] Yang Hou, Shumao Cui, Haejune Kim, Ren Ren, Zhenhai

Wen,* Junhong Chen*

Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200

North Cramer Street, Milwaukee, Wisconsin 53211, United States

Address correspondence to wenzhenhai@yahoo.com, jhchen@uwm.edu Author Contributions ‡These authors contributed equally.

Keywords: Electrocatalysts, Oxygen reduction reaction, Oxygen evolution reaction, NiFe alloy, Mesoporous

Figure S1. (a) SEM image, (b, c) TEM images, and N_2 adsorption-desorption isothermal curve of the SBA-15.

Figure S2. TEM images of (a, b) m-Ni/CN_x and (c, d) m-Fe/CN_x.

Figure S3. TEM images of (a) porous Fe_2O_3 and (c) porous NiO, and XRD pattern of (b) porous Fe_2O_3 and (d) porous NiO.

Porous Fe₂O₃ was prepared by a hydrothermal reaction with FeCl₃ and glucose as sources. Typically, 3.0 g glucose and 0.4 g FeCl₃ 6H₂O were added to a 30 ml aqueous solution containing \sim 1 mg ml⁻¹ graphene oxide (GO) solution under vigorous stirring; the mixed solution was then transfer to a 40 ml Teflon-lined stainless steel autoclave and heated at 180 °C for 5 h. After three rounds of centrifugation and washing, the resulting solid products were then converted to porous Fe₃O₄ by burning up the carbonaceous polymers and GO at 450 °C for 3 h. Porous NiO was prepared through the method developed by us previously.^[1]

Figure S4. Rotating disk voltammograms and the corresponding data re-plotted as the current density vs. overpotential (inset) in O_2 -saturated 0.1 M KOH at a scan rate of 5 mV s⁻¹ and 1600 rpm, and b) the corresponding Tafel plots at the m-NiFe/CN_x, porous Fe₂O₃, porous NiO, and C_3N_4 modified electrodes.

Figure S5. Linear sweep voltammetry curves of different materials modified electrode at a rotation rate of 1,600 rpm.

Figure S6. Polarization curves of ORR in the potential window range of $1.2\sim0.3$ V with different rotation rates for (a) m-Fe/CN_x, (b) m-Ni/CN_x, (c) C₃N₄, (d) NiFe/CN_x, (e) m-NiFe/CN_x.

Figure S7. RDE curves of NiFe/C₃N₄ (red) and PtC (black) in Ar- (dash line) or O₂-saturated (solid line) 0.1 M KOH solution at a scan rate of 5 mV s⁻¹ and a rotation speed of 1,600 rpm.

Table S1, S2 and S3 (Note: the potential in all tables is relative to RHE)

Ref	Catalyst	OER			ORR			Oxygen electrode	Electrolye
		Onset potential (V)	Overpotential at 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Onset potential	Potential at 3 mA cm ⁻²	n	Δ (OER–ORR): $E(V)$	
This work	m-NiFe/CNx	~1.45	0.36	59.1	0.91	0.76	~3.7	0.83	0.1 M KOH, 1600 rpm, 5 mV s ⁻¹
	NiFe/CNx	~1.57	0.47	73.6	0.89	0.68	~3.2	1.02	
	m-Fe/CNx	~1.74	>0.7	102.8	0.91	0.32	~2.5	>1.5	
	m-Ni/CNx	~1.71	0.65	94.5	0.71	<0.3	1.5	>1.5	
	Porous NiO	~1.59	0.52	97.5		<0.3	2.3	>1.5	
	Porous Fe ₂ O ₃	~1.71	>0.7	104.5		<0.3	1.8	>1.5	
	C ₃ N ₄	>1.8	>0.8	130.6	0.76	<0.3	2.2	>1.5	
1[2]	NiCo ₂ O ₄	1.56	0.41		0.84	~0.65	3.4-3.9	0.99	0.1 M KOH, 2500 rpm, 10 mV s ⁻¹
2[43]	NiCo ₂ S ₄ @N/S- rGO	1.56	0.47		0.85	~0.76	3.6-3.8	0.94	0.1 M KOH, 1600 rpm, 5 mV s ⁻¹
3[4]	Co ₃ O ₄ /Co ₂ Mn	1.55	0.54		0.87	0.68	3.97	1.09	0.1 M KOH, 1600 rpm, 5 mV s-1
4[5]	CaMn ₄ O _x		0.54		~0.90	0.73		1.04	0.1 M KOH, 1600 rpm, 5 mV s ⁻¹
5[6]	CoFe ₂ O ₄ /rGO	1.50	0.48		~0.83	~0.73	3.8-3.9	0.98	0.1 M KOH, 1600 rpm, 10 mV s ⁻¹
6[7]	CG-CoO	1.5	0.34	71	0.90		~4		1 M KOH, 20 mV s ⁻¹
7[8]	Co ₃ O ₄ /rmGO		0.31	67	0.88	~0.75		0.79	0.1 M KOH, 1600 rpm, 5 mV s ⁻¹
8[9]	CoMn ₂ O ₄ /PDD A-CNTs		0.51		~0.97	0.84	~4.3	0.85	0.1 M KOH, 1600 rpm, 10 mV s ⁻¹
9 ^[10]	Mn ₂ O ₃		0.58		~0.90	0.71		1.10	0.1 M KOH, 1600 rpm, 20 mV s ⁻¹
10[11]	NGSH	~1.45	0.40	83	0.88	~0.68	3.22	~0.95	0.1 M KOH, 1600 rpm, 5 mV s ⁻¹

Table S1. Performance parameter of the bifunctional electrocatalysts for OER and ORR

Table S2. Performance parameter of OER electrocatalyst

Ref	Catalyst	OER			Electrolyte
		Onset potential	Overpotential at 10 mA cm ⁻²	Tafel slope(mV dec-1)	
	m-NiFe/CNx	~1.45	0.36	59.1	0.1 M KOH, 1600 rpm, 5 mV s ⁻¹
11 ^[12]	3D NF/PC/AN	1.52	0.53		0.1 M KOH, 5 mV s ⁻¹
12[13]	LaCoO ₃	~1.48		60	0.1 M KOH, 1600 rpm, 10 mV s ⁻¹
13[14]	Ni–NG hybrid	~1.55		188.6	0.1 M KOH, 50 mV s ⁻¹
14[15]	3D NiFe-LDH NP	1.46	0.35	50	0.1 M KOH, 1 mV s ⁻¹
15[16]	NiFe LDH/CNT	~1.50	0.32	35	0.1 M KOH, 1600 rpm, 5 mV s ⁻¹
16[17]	PNG-NiCo	~1.54		156	0.1 M KOH, 50 mV s ⁻¹
17[18]	N/C-NiOx	~1.52	~0.5		0.1 M KOH, 1500 rpm, 5 mV s ⁻¹
18[19]	Zn-Co-LDH	1.57	~0.54		0.1 M KOH, 50 mV s ⁻¹
19[20]	$Zn_xCo_{3-x}O_4$	~1.50	0.32	51	1.0 M KOH, 0.5 mV s ⁻¹
20[21]	Mn ₃ O ₄ /CoSe ₂	~1.45	0.45	49	0.1 M KOH, 1600 rpm, 5 mV s ⁻¹

Table S3. Comparison of the ORR performance of different catalysts.

Ref	Catalyst	Catalyst ORR			Electrolyte	
		Onset potential	Limiting current density at 0.3 V(mA cm ⁻²)	п		
	m-NiFe/CNx	0.90	~6.3	~3.7	0.1 M KOH, 1600 rpm, 5 mV s ⁻¹	
21[22]	Co-N-GN	~0.87	~4.5	3.4-3.7	0.1 M KOH, 1600 rpm, 10 mV s ⁻¹	
22[23]	CoO/NCNT	0.93	3.5-4	3.9	0.1 M KOH, 1600 rpm, 5 mV s ⁻¹	
23[24]	SGnP	~0.74	4.8	3.3	0.1 M KOH, 1600 rpm, 5 mV s ⁻¹	
24[25]	C ₃ N ₄ /Carbon	~0.83	3.8	4	0.1 M KOH, 1500 rpm, 5 mV s ⁻¹	
25[26]	NG-900	0.92	~3.5	3.7	0.1 M KOH, 1500 rpm, 10 mV s ⁻¹	
26[27]	Fe ₃ O ₄ /N-GA	~0.86	~3.5	3.7-3.9	0.1 M KOH, 1600 rpm, 10 mV s ⁻¹	
27[28]	SNGL-20	~0.86	~4.0	3.7	0.1 M NaOH, 1600 rpm, 10 mV s ⁻¹	

References.

[1] S. Ci, J. Zou, G. Zeng, Q. Peng, S. Luo, Z. Wen. RSC Advances, 2012, 2, 5185–5192.

[2] C. Jin, F. L. Lu, X. C. Cao, Z. R. Yang, R. Z. Yang, J Mater Chem A 2013, 1, 12170.

[3] Q. Liu, J. T. Jin, J. Y. Zhang, Acs Appl Mater Inter 2013, 5, 5002.

[4] D. D. Wang, X. Chen, D. G. Evans, W. S. Yang, Nanoscale 2013, 5, 5312.

[5] Y. Gorlin, T. F. Jaramillo, J Am Chem Soc 2010, 132, 13612.

[6] W. Y. Bian, Z. R. Yang, P. Strasser, R. Z. Yang, J Power Sources 2014, 250, 196.

[7] S. Mao, Z. H. Wen, T. Z. Huang, Y. Hou, J. H. Chen, Energ Environ Sci 2014, 7, 609.

[8] Y. Y. Liang, Y. G. Li, H. L. Wang, J. G. Zhou, J. Wang, T. Regier, H. J. Dai, Nat Mater 2011, 10, 780.

[9] X. M. Zhai, W. Yang, M. Y. Li, G. Q. Lu, J. P. Liu, X. L. Zhang, Carbon 2013, 65, 277.

[10] K. L. Pickrahn, S. W. Park, Y. Gorlin, H.-B.-R. Lee, T. F. Jaramillo, S. F. Bent, Advanced Energy Materials 2012, 2, 1269.

[11] G.-L. Tian, M.-Q. Zhao, D. Yu, X.-Y. Kong, J.-Q. Huang, Q. Zhang, F. Wei, Small 2014, n/a.

[12] J. Wang, H.-x. Zhong, Y.-l. Qin, X.-b. Zhang, Angewandte Chemie International Edition 2013, 52, 5248.

[13] J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383.

[14] S. Chen, J. Duan, J. Ran, M. Jaroniec, S. Z. Qiao, Energ Environ Sci 2013, 6, 3693.

[15] Z. Lu, W. Xu, W. Zhu, Q. Yang, L. Xiaodong, J. Liu, Y. Li, X. Sun, X. Duan, Chemical Communications 2014.

[16] M. Gong, Y. G. Li, H. L. Wang, Y. Y. Liang, J. Z. Wu, J. G. Zhou, J. Wang, T. Regier, F. Wei, H. J. Dai, J Am Chem Soc 2013, 135, 8452.

[17] S. Chen, S. Z. Qiao, Acs Nano 2013, 7, 10190.

[18] Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat Commun 2013, 4.

[19] X. Zou, A. Goswami, T. Asefa, J Am Chem Soc 2013, 135, 17242.

[20] X. Liu, Z. Chang, L. Luo, T. Xu, X. Lei, J. Liu, X. Sun, Chemistry of Materials 2014, 26, 1889.

[21] M.-R. Gao, Y.-F. Xu, J. Jiang, Y.-R. Zheng, S.-H. Yu, J Am Chem Soc 2012, 134, 2930.

[22] S. Jiang, C. Z. Zhu, S. J. Dong, J Mater Chem A 2013, 1, 3593.

Y. Y. Liang, H. L. Wang, P. Diao, W. Chang, G. S. Hong, Y. G. Li, M. Gong, L. M. Xie,
J. G. Zhou, J. Wang, T. Z. Regier, F. Wei, H. J. Dai, J Am Chem Soc 2012, 134, 15849.

[24] I. Y. Jeon, S. Zhang, L. P. Zhang, H. J. Choi, J. M. Seo, Z. H. Xia, L. M. Dai, J. B. Baek, Adv Mater 2013, 25, 6138.

[25] J. Liang, Y. Zheng, J. Chen, J. Liu, D. Hulicova-Jurcakova, M. Jaroniec, S. Z. Qiao, Angew Chem Int Edit 2012, 51, 3892.

[26] K. Parvez, S. B. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. L. Feng, K. Mullen, Acs Nano 2012, 6, 9541.

[27] Z. S. Wu, S. B. Yang, Y. Sun, K. Parvez, X. L. Feng, K. Mullen, J Am Chem Soc 2012, 134, 9082.

[28] J. X. Xu, G. F. Dong, C. H. Jin, M. H. Huang, L. H. Guan, Chemsuschem 2013, 6, 493.