Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Materials

A 3D nanostructure of graphene interconnected with hollow carbon

spheres for high performance lithium-sulfur batteries

Shuangke Liu,^{**} Kai Xie,^a Zhongxue Chen, ^{a b} Yujie Li, ^a Xiaobin Hong,^a Jing Xu, ^a Liangjun Zhou,^a Junfei Yuan^a and Chunman Zheng^{**}

a College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China.

b College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China

E-mail: liu_sk@139.com; zhengchunman@hotmail.com

Figure S1 optical photographs of the (a) GO solution, (b) $3D \text{ GO-RF}@SiO_2$ wet gel, and (c) rGO-RF@SiO_2 gel

Figure S2 selected high resolution TEM image of the 3D rGO-HCS nanocomposite.

Figure S3 N₂ adsorption isotherms and pore-size distribution of 3D rGO-HCS nanocomposite.

Figure S4 XRD patterns of 3D GO-RF@SiO₂,3D rGO-HCS and the S@rGO-HCS nanocomposite

Figure S5 SEM images of (a) S@ HCS and (b) S@G nanocomposite

Figure S6 Rate performance of the S@rGO-HCS, S@HCS, and S@G electrode

Figure S7 Cycling performance of the S@rGO-HCS, S@HCS, and S@G electrode at 1C rate

Figure S8 Nyquist plots for the S@rGO-HCS, S@HCS and S@G electrodes in the frequency range of 100 mHz to 100 kHz

Figure S8 Cycling performance of the S@rGO-HCS electrode with sulfur mass loading of 2.0 mg cm^{-2} at 0.5C rate

Figure S9 Thermogravimetric analysis of the S@rGO-HCS nanocomposite, which were carried out at a flow rate of 10 $^{\circ}C/min$ under N₂ flow

Table S1. Comparisons of comprehensive performance between this work and some hollow sphere or graphene based sulfur cathode materials reported in recent years.

Composite [ref.]	Sulfur content	Potential	Discharge	Cyclic	Rate
		Range	Capacity	capacity	parameter
		[V]	[mAhg ⁻¹]	retention	[mAhg ⁻¹]
$C@S^{[46]}$	69.7%	1.7~3.1	1071,0.5C	91%,100th	450,3C
p-PCNS-H ^[49]	70%	1.5~3.0	920,0.5C	89.4%,100th	875,1C
DHCS-S ^[47]	64%	1.5~3.0	~1000,0.5C	69%,100th	350,1C
HCS-S ^[52]	57%	1.7~2.8	1098,0.12C	77%,100th	
CarbHS-G-S ^[48]	50%	1.1~3.2	1000,1C	60%,50th	400,5C
S-Pani	58%	1.5~3.0	920 ,0.5C	~77%,100th	
york-shell ^[11]				68.3%,200th	
$PPy \supset HCSs \supset S^{[51]}$	53.6%	1.2~3.0	~600,0.5C		~500,1C
PDA-NHC-S ^[50]	65%	1.5~2.9	740,0.6C	85.1%,600th	
GES ^[34]	83.3%	1.5~3.0	915,0.75C	86%,160th	480,6C
3D-GNS ^[42]	87.6%	1.7~2.8	853,0.36C	92.8%,145th	743,0.9C
N-ACNT/G@S [38]	52.6%	1.6~3.0	1152,1C	76%,80th	770,5C
				81.5%,100 th	
S@NG ^[37]	65.2%	1.7~2.8	1030,0.5C	73%,200th	606,5C
				69.3%,300th	
L-GPCS ^[53]	68%	1.7~2.6	885.5,0.5C	70%,100th	583,5C
S@SCNMM ^[54]	74%	1.0~3.0	1155,1C	75%,100th	860,5C
S@rGO-HCS (This work)	65%	1.7~2.8	972,0.5C	93.9%,100th	~770,4C
				86.1%,200th	
				79.3%,300th	
				73.2%,400th	