Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting information

A new class electroactive Fe and P-functionalized graphene for oxygen reduction

Fatemeh Razmjooei, Kiran Pal Singh, Eun Jin Bae and Jong-Sung Yu*

Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and

Technology (DGIST), Daegu 711-873, Republic of Korea,

E-mail: jsyu@dgist.ac.kr, Tel: (+82)-53-785-6443, Fax: (+82)-53-785-6409

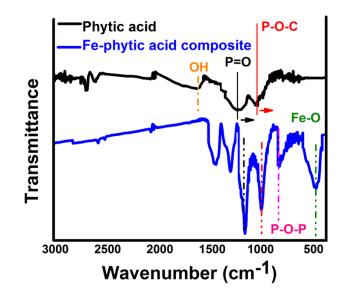


Fig. S1 FT-IR spectra of phytic acid and Fe-phytic acid composite.

Physical characteristics							
Sample	BET total surface area (m ² g ⁻¹)	Mesopore surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Mesopore volume (cm ³ g ⁻¹)	BJH pore size (nm)		
RGO	188.15	89.8	0.19	0.13	3.15		
GP	514.16	332.9	0.45	0.26	3.16		
GPFe	612.15	397.5	0.56	0.35	3.17		

Table S1 Structural characteristics by nitrogen sorption data of pristine, P-doped, and Fe andP-functionalized RGO samples

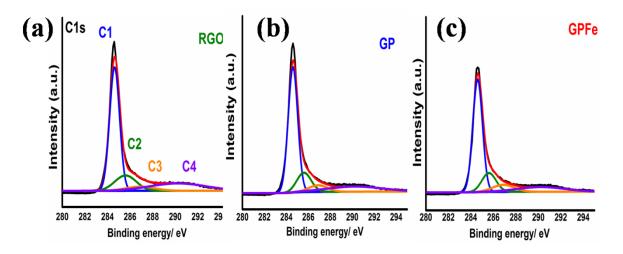


Fig. S2 Deconvoluted XPS spectra of C 1s for (a) pristine RGO, (b) GP, and (c) GPFe.

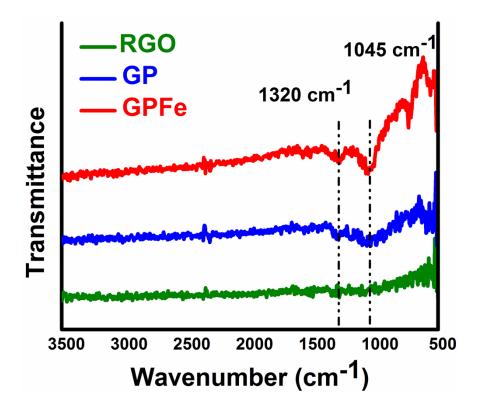
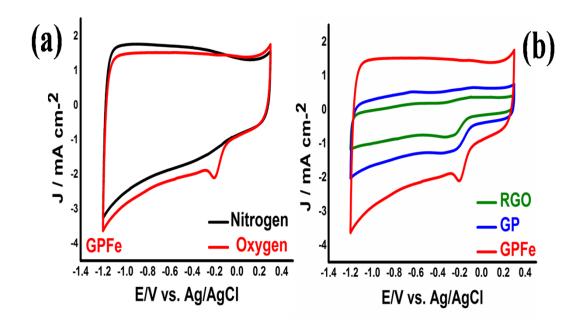
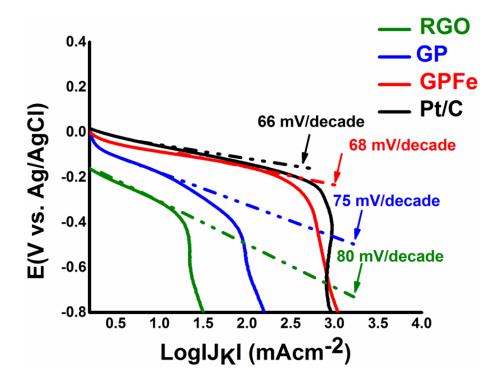
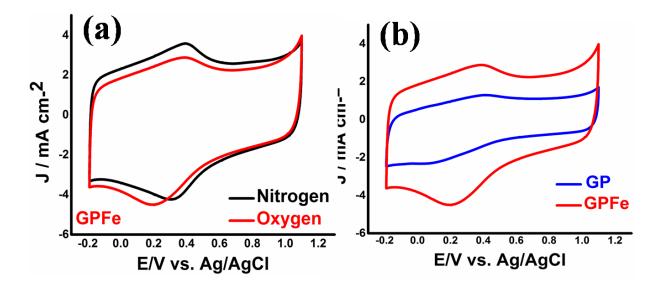
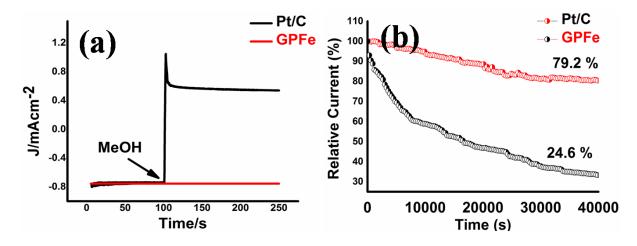



Fig. S3 FT-IR spectra of pristine RGO, GP, and GPFe.

Fig. S4 (a) CV curves at scan rate of 50 mVs⁻¹ for GPFe in N₂- and O₂-saturated 0.1 M KOH, and (b) CV profiles for pristine RGO, GP, and GPFe in O₂-saturated 0.1 M KOH.

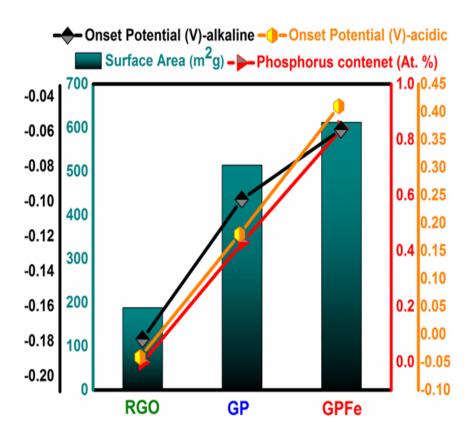

Fig. S5 Tafel plots for pristine RGO, GP, GPFe and Pt/C derived by the mass-transport correction of corresponding LSV data at a rotation rate of 1,600 rpm in O_2 -saturated 0.1 M KOH solution.

Fig. S6 (a) CV curves at scan rate of 50 mVs⁻¹ for GPFe in N_2 - or O_2 -saturated 0.5 M H₂SO₄, and (b) CV profiles for GP and GPFe in O_2 -saturated 0.5 M H₂SO₄.

Fig. S7 (a) CA curves at -0.3 V in O₂-saturated 0.1 M KOH solution before and after addition of 3.0 M methanol, and (b) relative J–t responses vs. time at -0.3 V in O₂-saturated 0.1 M KOH solution for GPFe and 20 wt% Pt/C (E-TEK) electrodes.

Fig. S8 Comparison of P content, surface area and onset potential in alkaline and acidic media for pristine RGO, GP and GPFe.

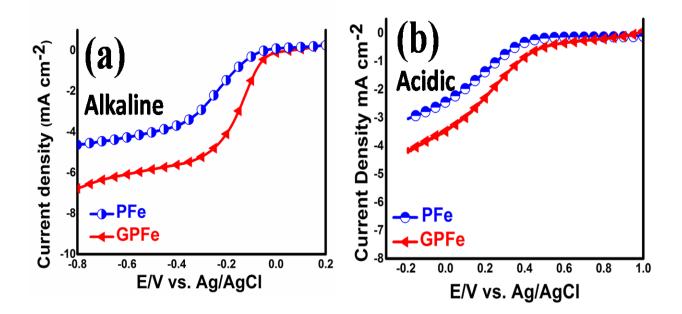


Fig. S9 linear sweep voltammograms (scan rate: 10 mV/s and rotation speed: 1,600 rpm) for PFe and GPFe catalysts in O_2 -saturated (a) 0.1 M KOH, and (b) 0.5 M H_2SO_4 solution, respectively.

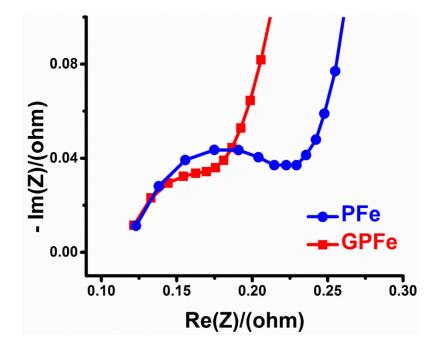
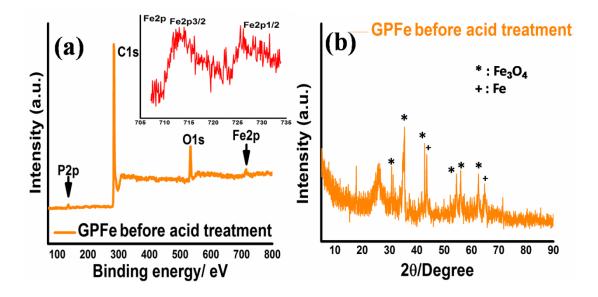



Fig. S10 EIS Nyquist plots measured for the PFe and GPFe samples in O_2 -saturated 0.5 M H_2SO_4 solution.

Fig. S11 (a) XPS survey spectrum and Fe 2p narrow scan spectrum and (b) XRD pattern of GPFe before acid treatment.

Table S2 Surface element contents obtained from the XPS analysis for GPFe before and after

 acid treatment

Atomic composition (%)								
Sample	C 1s	O 1s	P 2p	Fe 2p				
GPFe before acid								
treatment	88.81	9.31	0.85	1.03				
GPFe after acid								
treatment	94.24	4.32	0.84	0.6				

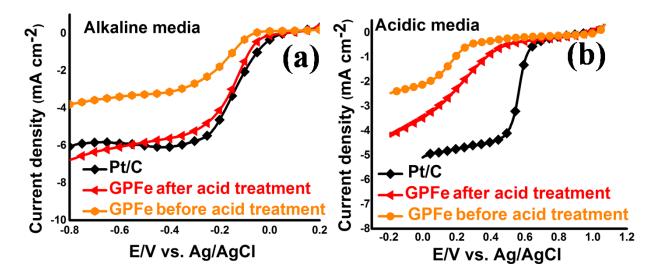


Fig. S12 linear sweep voltammograms (scan rate: 10 mV/s and rotation speed: 1,600 rpm) for GPFe catalyst before and after acid treatment, and 20 wt% Pt/C (E-TEK) electrodes in O_2 -saturated in (a) 0.1 M KOH, and (b) 0.5 M H₂SO₄ solution, respectively.