Supporting Information

Hierarchically Nanoporous $La_{1.7}Ca_{0.3}CuO_{4-\delta}$ and $La_{1.7}Ca_{0.3}Ni_xCu_{1-x}O_{4-\delta}$ (0.25 \leq x \leq 0.75) as Potential Cathode Materials for IT-SOFCs

Xiubing Huang, Tae Ho Shin, Jun Zhou and John T.S. Irvine*

School of Chemistry, University of St Andrews, St Andrews, Fife, United Kingdom
Email: jtsi@st-andrews.ac.uk

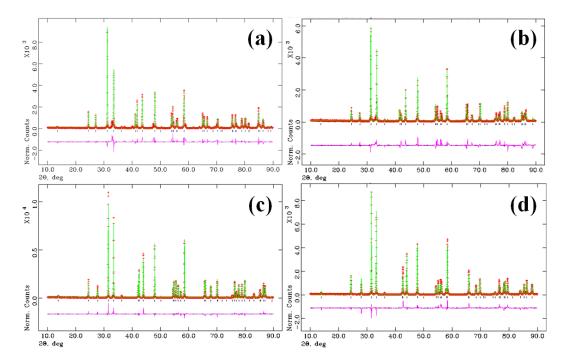


Figure S1. Observed (points) and calculated (full curve) XRD patterns using I4/mmm model for $La_{1.7}Ca_{0.3}Ni_xCu_{1-x}O_{4-\delta}$: (a) $La_{1.7}Ca_{0.3}CuO_{4-\delta}$, (b) $La_{1.7}Ca_{0.3}Ni_{0.25}Cu_{0.75}O_{4-\delta}$, (c) $La_{1.7}Ca_{0.3}Ni_{0.5}Cu_{0.5}O_{4-\delta}$, (d) $La_{1.7}Ca_{0.3}Ni_{0.75}Cu_{0.25}O_{4-\delta}$.

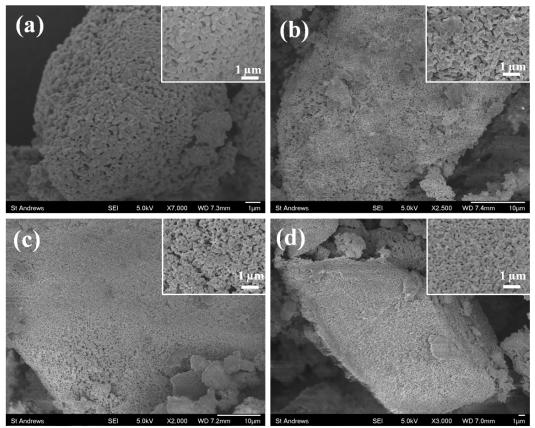


Figure S2. FESEM images of $La_{1.7}Ca_{0.3}Ni_{x}Cu_{1-x}O_{4-\delta}$ after calcination at 900 °C for 2 h: (a) $La_{1.7}Ca_{0.3}CuO_{4-\delta}$, (b) $La_{1.7}Ca_{0.3}Ni_{0.25}Cu_{0.75}O_{4-\delta}$, (c) $La_{1.7}Ca_{0.3}Ni_{0.5}Cu_{0.5}O_{4-\delta}$, (d) $La_{1.7}Ca_{0.3}Ni_{0.75}Cu_{0.25}O_{4-\delta}$. Inset are their SEM images with higher magnification.

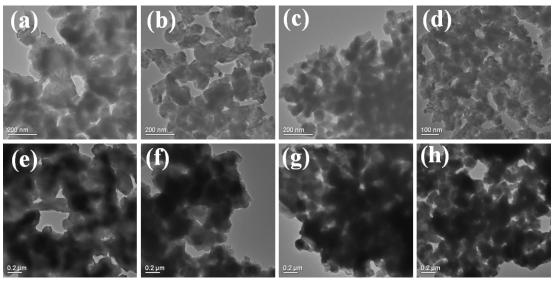


Figure S3. TEM images of $La_{1.7}Ca_{0.3}Ni_xCu_{1-x}O_{4-\delta}$ after calcination at 750 °C (a-d) and 900 °C (e-h) for 2 h: (a, e) $La_{1.7}Ca_{0.3}CuO_{4-\delta}$, (b, f) $La_{1.7}Ca_{0.3}Ni_{0.25}Cu_{0.75}O_{4-\delta}$, (c, g) $La_{1.7}Ca_{0.3}Ni_{0.5}Cu_{0.5}O_{4-\delta}$, (d, h) $La_{1.7}Ca_{0.3}Ni_{0.75}Cu_{0.25}O_{4-\delta}$.

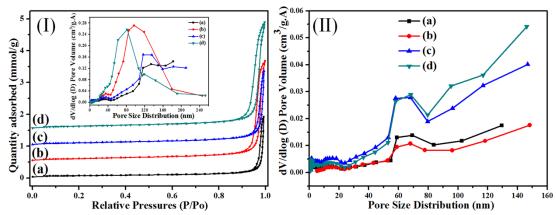


Figure S4. (I) N₂ adsorption/desorption isothermal curves of La_{1.7}Ca_{0.3}Ni_xCu_{1-x}O_{4-δ} samples after calcination at 750 °C and (II) pore size distribution curves after calcination at 900 °C for 2 h: (a) La_{1.7}Ca_{0.3}CuO_{4-δ}, (b) La_{1.7}Ca_{0.3}Ni_{0.25}Cu_{0.75}O_{4-δ}, (c) La_{1.7}Ca_{0.3}Ni_{0.5}Cu_{0.5}O_{4-δ}, (d) La_{1.7}Ca_{0.3}Ni_{0.75}Cu_{0.25}O_{4-δ}. Inset of (I) is the pore size distribution curves for La_{1.7}Ca_{0.3}Ni_xCu_{1-x}O_{4-δ} obtained at 750 °C for 2 h.

Table S1. Textural properties of perovskites obtained at 750 °C and 900 °C for 2 h

Temperature	Sample	BET (m ² g ⁻¹)	Pore Volume (cm³ g-¹)	Average pore size (nm)
750 °C	$La_{1.7}Ca_{0.3}CuO_{4-\delta}$	5.49	0.050	49.37
	$La_{1.7}Ca_{0.3}Ni_{0.25}Cu_{0.75}O_{4-\delta}$	8.65	0.105	55.92
	$La_{1.7}Ca_{0.3}Ni_{0.5}Cu_{0.5}O_{4-\delta}$	8.32	0.071	40.41
	$La_{1.7}Ca_{0.3}Ni_{0.75}Cu_{0.25}O_{4-\delta}$	10.07	0.113	53.20
900 °C	$La_{1.7}Ca_{0.3}CuO_{4-\delta}$	2.23	0.010	7.85
	$La_{1.7}Ca_{0.3}Ni_{0.25}Cu_{0.75}O_{4-\delta}$	1.23	0.008	45.35
	$La_{1.7}Ca_{0.3}Ni_{0.5}Cu_{0.5}O_{4-\delta}$	4.42	0.024	12.11
	$La_{1.7}Ca_{0.3}Ni_{0.75}Cu_{0.25}O_{4-\delta}$	3.06	0.024	13.92

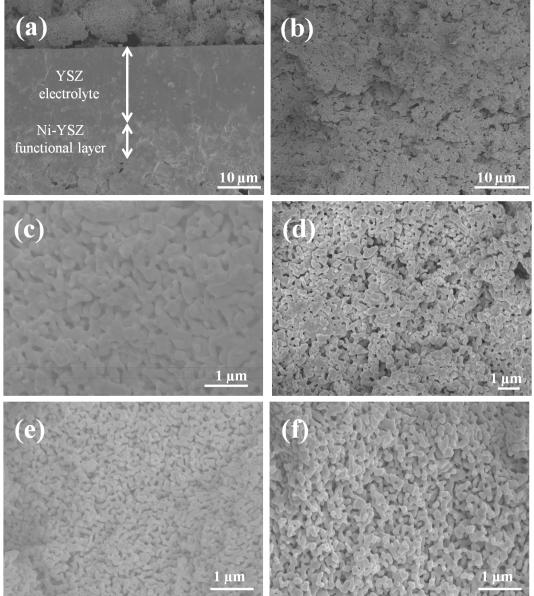


Figure S5. SEM images of Ni-YSZ|YSZ|La_{1.7}Ca_{0.3}Ni_xCu_{1-x}O_{4- δ} single cell cross section: (a) La_{1.7}Ca_{0.3}CuO_{4- δ}-YSZ, (b) Ni-YSZ anode, (c) La_{1.7}Ca_{0.3}CuO_{4- δ}, (d) La_{1.7}Ca_{0.3}Ni_{0.25}Cu_{0.75}O_{4- δ}, (e) La_{1.7}Ca_{0.3}Ni_{0.5}Cu_{0.5}O_{4- δ}, (f) La_{1.7}Ca_{0.3}Ni_{0.75}Cu_{0.25}O_{4- δ}.

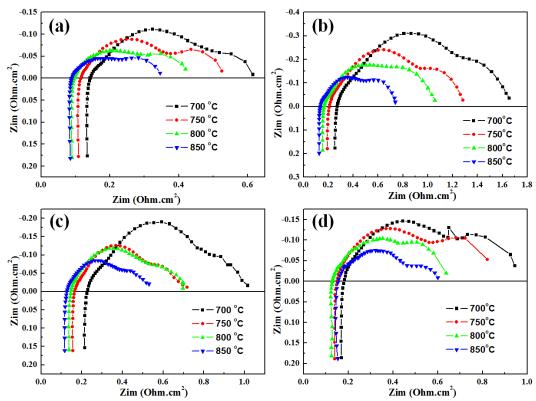


Figure S6. Impedance spectra of single cell Ni-YSZ|YSZ|La_{1.7}Ca_{0.3}Ni_xCu_{1-x}O_{4- δ}: (a) La_{1.7}Ca_{0.3}CuO_{4- δ}; (b) La_{1.7}Ca_{0.3}Ni_{0.25}Cu_{0.75}O_{4- δ}; (c) La_{1.7}Ca_{0.3}Ni_{0.5}Cu_{0.5}O_{4- δ}; (d) La_{1.7}Ca_{0.3}Ni_{0.75}Cu_{0.25}O_{4- δ}.

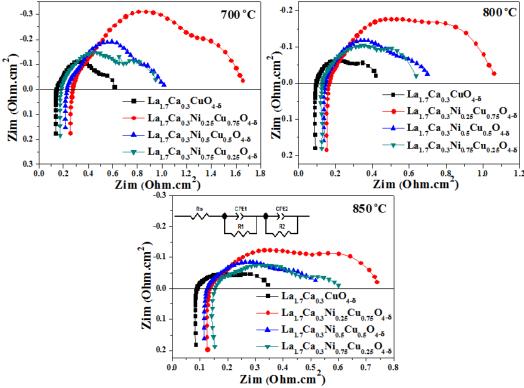


Figure S7. Impedance spectra of single cell Ni-YSZ|YSZ|La $_{1.7}$ Ca $_{0.3}$ Ni $_x$ Cu $_{1-x}$ O $_{4-\delta}$ with different cathode materials at operating temperatures.

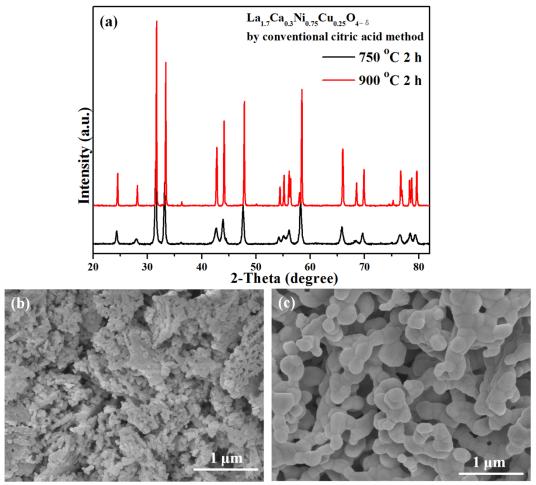


Figure S8. XRD patterns (a) and SEM images of $La_{1.7}Ca_{0.3}Ni_{0.75}Cu_{0.25}O_{4-\delta}$ by conventional citric acid method after calcination at 750 °C (b) and 900 °C (c) for 2 h.

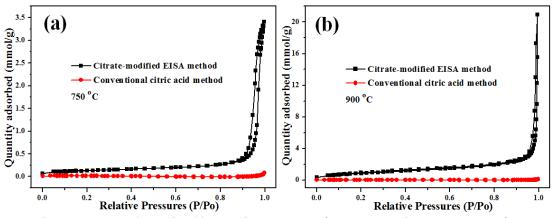


Figure S9. N_2 adsorption/desorption curves of $La_{1.7}Ca_{0.3}Ni_{0.75}Cu_{0.25}O_{4-\delta}$ after calcination at different temperatures for 2 h: (a) 750 °C, (b) 900 °C. The BET surface areas for $La_{1.7}Ca_{0.3}Ni_{0.75}Cu_{0.25}O_{4-\delta}$ using conventional citric acid method after calcination at 750 and 900 °C for 2 h are 0.72 and 0.25 m^2/g , respectively. The pore volumes for $La_{1.7}Ca_{0.3}Ni_{0.75}Cu_{0.25}O_{4-\delta}$ using conventional citric acid method after calcination at 750 and 900 °C for 2 h are both about 0.002 cm^3/g .