Supporting Information

Active LaNi_{1-x}Fe_xO₃ Bifunctional Catalysts for Air Cathodes in Alkaline Media

A. N. Daiwei Zhang, a,b,c A. N. Yufeng Song, A. N. Zhenzhen Du, A. N. Long Wang, A. N. Yutao Li, A. N. John B. Goodenough A. N. Long Wang, A. N. Yutao Li, A. N. John B. Goodenough

^a School of Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China.

^b Texas Materials Institute, The University of Texas at Austin, 1 University Station, C2201, Austin, Texas78712.

^c CAS Key Laboratory of Materials for Energy Conversion, Hefei, 230026, P.R. China.

* Texas Materials Institute, Materials Science & Engineering Program, The University of Texas at Austin.

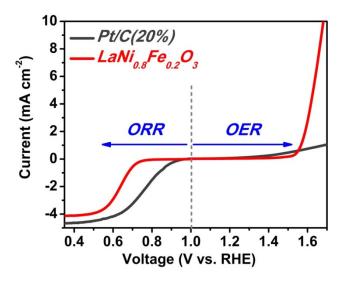


Fig. S1 Comparison of the ORR/OER polarization curves of LaNi_{0.8}Fe_{0.2}O₃ and commercial Pt/C (20%) on glass carbon rotating disk electrode in an O₂ saturated 1M KOH solution (conditions: temperature -- 25° C, sweep rate-- 5mV/s, rotation rate-- 1600rpm)

The electrocatalytic activity of LaNi_{0.8}Fe_{0.2}O₃ for ORR/OER was characterized by linear scanning voltammetry (LSV) in 1 M KOH on a glassy carbon electrode and compared with commercial Pt/C (20%) (Figure S1). Pt/C (20%) has higher ORR onset potential and diffusion-limiting current than LaNi_{0.8}Fe_{0.2}O₃, while

 $LaNi_{0.8}Fe_{0.2}O_3$ exhibits much higher OER current density than Pt/C.