Supporting Information

Ultrathin TiO₂-B nanowires with enhanced electrochemical performance for Li-ion batteries

Tongbin Lan^{*a, b*}, Jie Dou, ^{*a, b*} Fengyan Xie, ^{*a, b*} Peixun Xiong, ^{*a, b*} Mingdeng Wei^{*a, b*} *

^a State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002, China
 ^b Institute of Advanced Energy Materials, Fuzhou University, Fuzhou, Fujian 350002, China

*Corresponding author: Mingdeng Wei Tel./fax: +86-591-83753180 *E-mail address:* <u>wei-mingdeng@fzu.edu.cn</u>

Fig. S1 (a) XRD patterns from 20° to 30° and (b) the size distribution obtained from dynamic light scattering (DLS) measurements of (i) TiO₂-B and (ii) TiO₂-B/RGO hybrid, respectively; (c) Raman spectra of (i) GO and (ii) TiO₂-B/RGO hybrid, respectively.

Fig. S2 C(1s) X-ray photoelectron spectra (XPS) of (a) GO and (b) TiO_2 -B/RGO hybrid.

Fig. S3 Rate capabilities from 1 to 30 C (a) and cycling performances with a current density of 10 C (b) of the cell made of pure RGO.

Fig. S4 (a) Rate capabilities from 1 to 30 C and (b) cycling performances at a current density of 10 C for TiO_2 -B, TiO_2 -B/RGO hybrid and TiO_2 -B/RGO excluded RGO, respectively.

Fig. S5 Cycling performances with a current density of 10 C of the cell made of TiO_2 -B and TiO_2 -B/RGO hybrid based on a larger loading on the electrode (3.0 mg/cm⁻²).

The cycling performances with a current density of 10 C of the cell made of TiO_2 -B and TiO_2 -B/RGO hybrid based on a larger loading on the electrode (3.0 mg/cm⁻²) was show in the Fig. S5. Compared with thin loading on the electrode, it demonstrated a slightly lower reversible capacity at a current rate as high as 10 C after activating at 1 C for the initial three cycles. A capacity of 178.4 mA h g⁻¹ was obtained after 100 cycles for the TiO₂-B/RGO hybrid. Whereas, TiO₂-B only retained a capacity of 157.4 mA h g⁻¹ at the same current density.

Sample	R _s /Ω	R_{ct}/Ω
TiO ₂ -B	5.3	38.2
TiO ₂ -B/RGO	4.8	22.1

 Table S1 Impedance parameters calculated from equivalent circuit model.