Electronic Supplementary Information Ru_{0.01}Ti_{0.99}Nb₂O₇ as an intercalation-type anode material with a large capacity and high rate performance for lithium-ion batteries

Chunfu Lin,*‡^a Shu Yu,‡^b Shunqing Wu,*^b Shiwei Lin,*^a Zi-Zhong Zhu,^b Jianbao Li^a and Li Lu*^c

a Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China; E-mail: linchunfu@hainu.edu.cn (C. F. Lin); E-mail: linsw@hainu.edu.cn (S. W. Lin); Fax: +86-898-66290185; Tel: +86-898-66290185

b Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, PR China; E-mail: wsq@xmu.edu.cn (S. Q. Wu); Fax: +86-592-2189426; Tel: +86-592-2182248

c Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore. E-mail: luli@nus.edu.sg; Fax: +65-67791459; Tel: +65-65162236

[‡] These authors have contributed equally to this work

Fig. S1 Crystal structure of TiNb₂O₇ showing the m \times n $\times \infty$ (m = n = 3) ReO₃-type blocks.

Fig. S2 (a) Nyquist plots of Li₄Ti₅O₁₂/Li cell. (b) Relationship between real impedance with low frequency for Li₄Ti₅O₁₂/Li cell. The specific surface area of Li₄Ti₅O₁₂ is 3.63 m² g⁻¹. The loading density of Li₄Ti₅O₁₂ is 1.45 mg cm⁻². $\sigma_w = 11.95 \Omega s^{-0.5}$. $D = 1.81 \times 10^{-16} cm^2 s^{-1}$.

Fig. S3 Coulumbic efficiency of $Ru_{0.01}Ti_{0.99}Nb_2O_7/Li$ cell at 5 C.

Fig. S4 *Ex-situ* XRD patterns of TiNb₂O₇ electrodes after (a) as-fabricated, (b) first-discharged to 0.8 V vs. Li/Li⁺, (c) first-charged to 3 V vs. Li/Li⁺, and (d) charged to 3 V vs. Li/Li⁺ in the 10th cycle. Identical discharge–charge rates were used.

Fig. S5 SEM image and EDX mapping of $Ru_{0.01}Ti_{0.99}Nb_2O_7.$