Electronic Supplementary Information

ZnO nanorods covered with TiO₂ layer: simple sol-gel preparation, optical, photocatalytic and photoelectrochemical properties

Maciej Kwiatkowski,^{*a,b,**} Igor Bezverkhyy,^{*a*} and Magdalena Skompska^{*b,c*}

^aLaboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CRNS-Université de Bourgogne, 9 avenue Alain Savary, BP 47870-21078, Dijon Cedex, France

^bLaboratory of Electrochemistry, Faculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland

^cBiological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland

* Corresponding author's e-mail: mkwiatkowski@chem.uw.edu.pl

1. Experimental Results

Fig. S1. Temperature change over time of aqueous solution in a cuvette placed at fixed distance of 1 cm from LED emitter.

Fig. S2. EDX spectra of 3c-30min (a) and 1c-6h (b) samples.

Fig. S3. The absorbance spectra of the initial MB conditioning solution (black curve, 1) and after 24 h of MB adsorption on ITO/ZnO (green curve, 2), 3c-30min (blue curve, 3) and 1c-6h (red curve, 4) samples.

Fig. S4. Theoretical Zn/Ti atomic ratios in a function of thickness of TiO₂ layer deposited on ZnO, determined by calculations by means of QUASES-IMFP-TPP2M program. Scheme on the right side of the figure illustrates the basis of the analysis concept.

Fig. S5. $(\alpha h\nu)^{1/n}$ as a function of photon energy $(h\nu)$ calculated from diffuse reflectance spectra for determination of optical energy band gaps of the ITO/ZnO and the TiO₂ powder.