Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Quasi-Graphene-Envelope Fe-doped Ni₂P Sandwiched Nanocomposites for Enhanced Water Splitting and Lithium Storage Performance

Yangyang Feng^a, Ya OuYang^a, Liang Peng^a, Huajun Qin^a*, Hailiang Wang^b, Yu Wang^a*

^aThe State Key Laboratory of Mechanical Transmissions and School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China; ^bDepartment of Chmistry, Yale University, 520 West Campus Drive, Energy Sciences Center 1, West Haven, CT06516 *Email: wangy@cqu.edu.cn; hjqiu@cqu.edu.cn

Figure S1. Low-magnification SEM image to clarify the uniformity and scalability of $NiNH_4PO_4$ · H_2O nanosheets and the thickness of the precursor is about 40 nm (inset).

Figure S2. Low-magnification SEM image of sandwiched (Fe)Ni₂P/graphene.

Figure S3. HRTEM image of the hexagonal lattices in the graphene envelope to confirm the existence of graphene.

Figure S4. Polarization curves of (Fe)Ni₂P/Graphene, tested in thermostatic water bath from 0 to 25 and 50 °C (0.5 M H_2SO_4 , scan rate: 5 mV s⁻¹).

Figure S5. Comparison of AC impedance of Fe-doped Ni_2P /Graphene (red dot line), Ni_2P /Graphene (green dot line) and Ni_2P nanoparticles (black dot line) from 0.01Hz to 100 kHz.

Figure S6. (a) SEM and (b) TEM to clarify the well-maintained sandwiched structure after 200 cycles of galvanostatic charge-discharge. (c) HRTEM to show the crystalline structure of $(Fe)Ni_2P$ nanoparticles.