Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting information for

Synthesis of Porous Cu₂O/CuO Cages using Cu-based Metal-Organic-

Framework as Templates and their Gas-sensing Properties

Yiting Wang, Yinyun Lü, Wenwen Zhan, Zhaoxiong Xie, Qin Kuang,* and Lansun Zheng

State Key Laboratory of Physical Chemistry of Solid Surfaces & Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China. Email: <u>qkuang@xmu.edu.cn</u>

Table S1. Comparison of the gas sensing performances of Cu_2O , CuO or Cu_2O/CuO based sensors.

Materials	Morphology	Surface area	Operation Temperature	Sensitivity	Ref.
		$(m^2 \cdot g)$	(°C)	(for detected gas)	
Cu ₂ O	Polyhedral cages	_	210	8.53 (50 ppm ethanol)	[42]
	Hierarchical microspheres	_	_	8.2 (100 ppm ethanol)	[43]
	Solid nanocubes	_	200	1.6 (100 ppm ethanol)	[44]
	Porous spheres	_	210	$Cu_2O > CuO$	[39]
CuO	Cloudlike	_	300	4.6 (100 ppm CO)	[45]
	nanoparticles				
	Hierarchical porous	18.2	400	1.8 (100 ppm ethanol)	[35]
	boxes				
	nanosheets	15.0	260	2.4 (100 ppm ethanol)	[38]
	urchin-like	26	200	5.8 (100 ppm H ₂)	[46]
Cu ₂ O/CuO	Porous spheres	67	95	$6.2 (1 ppm H_2S)$	[34]
	Porous cubes	28	150	2.0 (500 ppm ethanol)	[37]
	Porous microframes	_	240	1.5 (100 ppm CO)	[40]

Fig. S1 (a_1, a_2) SEM images of the octahedral HKUST-1 precursors synthesized by the methods (1) without LA and (2) with LA. (b_1, b_2) SEM images and (c_1, c_2) TEM images of the octahedra Cu₂O/CuO cages converted from two precursors above. XRD patterns of (d) the octahedral HKUST-1 precursors synthesized by the two methods and (e) their decomposed products.

Fig. S2 SEM images of the products after calcination at 350 °C with (a) octahedral, (b) truncated octahedral, and (c) cubic precursors.