Supporting Information

Incorporation of a Molecular [Ru(dcbpy)(bpy)₂]²⁺ Photosensitizer and a Pt(dcbpy)Cl₂ Catalyst into Metal-Organic Frameworks for Photocatalytic Hydrogen Evolution from Aqueous Solution

Chun-Chao Hou, Ting-Ting Li, Shuang Cao, Yong Chen,* and Wen-Fu Fu

^a Key Laboratory of Photochemical Conversion and Optoelectronic Materials and HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P.R. China

E-mail: <u>chenyong@mail.ipc.ac.cn</u>

^b College of Chemistry and Engineering, Yunnan Normal University, Kunming 650092, P.R. China

Figure S1. (A) The UV-vis absorption spectra of RuDCBPY at various concentrications in aqueous solution. (B) The absorbance of RuDCBPY at 448 nm as a function of concentration.

Figure S2. N₂ absorption (filled sympols) and desorption (open sympols) isotherms for Pt-UIO-67 (red) and Ru-Pt@UIO-67 (black).

Figure S3. Pore size distribution of Pt-UIO-67 (left) and Ru-Pt@UIO-67 (right) obtained from N_2 gas sorption experiments by DFT calculation.

Samples	S _{bet}	Pore volume	Main Pore Size	
UIO-67	3000 m²/g	1.05 cm ³ /g	8 Å	
Pt@-UIO-67	2053.713 m ² /g	0.9083 cm ³ /g	8-10 Å	

Ru-Pt@UIO-67

1886.130 m²/g

0.8286 cm³/g

8-10 Å

Table S1. Surface area, pore volume and main pore size of Pt@UIO-67 and Ru-Pt@UIO-67.

Figure S4. SEM images of (a) UIO-67, (b) Pt@UIO-67 and (c,d) Ru-Pt@UIO-67. Scale bar: 1 μ m.

Figure S5. SEM-Energy disperses X-ray (EDX) analysis in random areas of UIO-67, Pt@UIO-67, and Ru-Pt@UIO-67 (from top to bottom).

Figure S6. Photographs of Pt@UIO-67 and Ru-Pt@UIO-67 MOFs with various doping concentrations under natural light.

Figure S7. The XRD patterns of Ru-Pt@UIO-67 MOFs.

Figure S8. The XRD patterns of Pt@UIO-67 MOFs.

Figure S9. Photocatalytic hydrogen production after 5 h of irradiation from an acetate buffer solution (pH = 5.0) of EDTA-2Na and Ru-Pt@UIO-67 (5 mg). Light source: LED $\lambda > 420$ nm, 30×1 W.

Figure S10. Photocatalytic hydrogen production from an acetate buffer solution (pH = 5.0) of EDTA-2Na and Pt@UIO-67 (~1.47 µmol Pt). Light source: LED $\lambda > 420$ nm, 30×1 W.

Figure S11. Emission spectra of Pt@UIO-67 MOFs with various doping concentrations at 77 K ($\lambda_{ex} = 365$ nm). Inset: The emission spectrum of Pt(dcbpy)Cl₂ in glassy MeOH/EtOH (1:4) solution at 77 K ($\lambda_{ex} = 365$ nm).

Figure S12. The diameters of RuDCBPY and PtDCBPY molecules.

Figure S13. The cyclic voltammograms (CV) and linear sweep voltammograms (LSV) of 0.1 mM PtDCBPY (top) and 0. 1 mM RuDCBPY (bottom) in DMF solution.

Compound	λ _{max} (nm)		λ _{em} (nm)		Ε _{1/2} ^{αx} (ΔΕ)	$E_{1/2}^{red}(\Delta E)$
	H ₂ O	DMF	H ₂ O	DMF		
Ru-DCBPY	448	462	650	625	0.97(169)	-1.19(42), -1.46(75), -1.77(66)
Pt-DCBPY	415				1.13 ^{ir}	-1.25(34), -0.65(37)

Table S2. Spectral data and electrochemical potentials $(E_{1/2} \text{ vs } Ag/AgCl)^a$ of RuDCBPY and PtDCBPY.

^a Measured with a glassy carbon working electrode, a Ag/AgCl reference electrode, and a platinum plate counter electrode in DMF solution containing ⁿBu₄NPF₆ (0.1 M) at a scan rate of 100 mV/s; ir = irreversible. $E_{1/2} = (E_{pa} + E_{pc})/2$ in volts, and $\Delta E = E_{pa} - E_{pc}$ in mV.

Figure S14. The emission spectra of RuDCBPY in DMF and in water.

Figure S15. Emission lifetime decays obtained at room temperature for Ru-Pt@UIO-67.

Figure S16. The nanosecond transient absorption spectra and the corresponding nanosecond recovery kinetics of transient bleaching recovery (monitored at 400 nm upon laser excitation at 355 nm) for EDTA-2Na (30 mM) + $[Ru(dcbpy)(bpy)_2]^{2+}(1.5\times10^{-4} \text{ M})$ in pH 5.0 solution.

Figure S17. TEM images of Ru-Pt@UIO-67 obtained at different reaction time.

Figure S18. TEM images of Pt@UIO-67 obtained at different reaction time.