SUPPORTING INFORMATION

Engineering Hollow Mesoporous Silica Nanocontainers with Molecular Switches for Continuous Self-Healing

 Anticorrosion Coating

 Anticorrosion Coating}

Tao Chen ${ }^{a b}$, Renpeng Chen ${ }^{a}$, Zhong Jin ${ }^{*} a$ and Jie Liu ${ }^{*}{ }^{c}$
${ }^{a}$ Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China. Tel: +86-25-83686220; E-mail: zhongjin@nju.edu.cn
${ }^{b}$ School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
${ }^{c}$ Department of Chemistry, Duke University,Durham, USA.E-mail: j.liu@duke.edu

Figure S1. SEM micrographs of a) SiO_{2} and b) $\mathrm{SiO}_{2} @ C T A B / A z o-\mathrm{SiO}_{2}$ particles.

Figure S2. FTIR spectra of azobenzene and Azo-HMSs. It can be found that azobenzene has been successfully immobilized into mesoporous silica layer by the appearance of the azobenzene vibration modes ($\mathbf{(})$.

Figure S3. (left) UV-vis absorption spectral changes of Azo-HMSs under visible light. (right) UV-vis absorption spectra of Azo-HMSs before and after irradiation with UV light (365 nm) for 0 to 120 min .

Figure S4. BET nitrogen adsorption/desorption isotherms (left) and BJH pore size distribution (right) of Azo-HMSs and BTA@Azo-HMSs. Nitrogen adsorptiondesorption isotherm measurements on Azo-HMSs and BTA@Azo-HMSs show an average BET surface area of approximately 991.1 and $384.2 \mathrm{~m}^{2} \cdot \mathrm{~g}^{-1}$, respectively, and a total pore volume of 0.86 and $0.35 \mathrm{~mL} \cdot \mathrm{~g}^{-1}$. The pore size distribution of both AzoHMSs and BTA@Azo-HMSs is as narrow as $\sim 2.1 \mathrm{~nm}$.

Figure S5. TGA profiles of Azo-HMSs and BTA@Azo-HMSs. TGA data show that the weight loss of Azo-HMSs and BTA@Azo-HMSs are 5.7 \% and 30.9 \%. The amount of azobenzene is determined to be $0.2 \mathrm{mmol} \cdot \mathrm{g}^{-1} \mathrm{SiO}_{2}$ for Azo-HMSs. The loading amount of BTA is $252 \mathrm{mg} \mathrm{g}^{-1} \mathrm{SiO}_{2}$, calculated by the difference of weight loss of Azo-HMSs and BTA@Azo-HMSs.

Figure S6. SVET current density maps obtained after the fourth times of repeating scratching.

