## Solar hydrogen evolution using $CuGaS_2$ photocathode improved by incorporating reduced graphene oxide

Akihide Iwase,<sup>a,b</sup>\* Yun Hau Ng,<sup>c</sup> Rose Amal,<sup>c</sup> Akihiko Kudo<sup>a,b</sup>\*

<sup>a</sup> Department of Applied Chemistry, Faculty of Science, Tokyo University of Science,

1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

<sup>b</sup> Photocatalysis international Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan

<sup>c</sup> ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia

## **Supporting information**



Figure S1 XRD pattern of CuGaS<sub>2</sub> synthesized by a solid-state reaction.



Figure S2 Diffuse reflectance spectra of  $CuGaS_2$  and RGO-CuGaS<sub>2</sub>.



Figure S3 Electrochemical impedance spectra of (a)  $CuGaS_2$  and (b)  $RGO-CuGaS_2$  photoelectrodes.



**Figure S4** *I-V* curves of RGO-CuGaS<sub>2</sub> composite photocathode and CoOx-loaded BiVO<sub>4</sub> photoanode under visible light irradiation. Electrolyte: 0.1 mol L<sup>-1</sup> K<sub>2</sub>SO<sub>4</sub>, light source; 300-W Xe lamp with a cutoff filter ( $\lambda$ >420 nm).



**Figure S5** Current (left axis) and rate of  $H_2$  evolution (right axis) using a photoelectrochemical cell consisting of RGO-CuGaS<sub>2</sub> composite photocathode (1.9 cm<sup>2</sup>) and CoOx-loaded BiVO<sub>4</sub> photoanode (1.1 cm<sup>2</sup>) with applying 0.5 V of bias between two electrodes. Electrolyte: aqueous buffer solution containing dissolved KH<sub>2</sub>PO<sub>4</sub> and Na<sub>2</sub>HPO<sub>4</sub> (pH7), light source: simulated sunlight (AM 1.5, 100 mW).