Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Rational Design and Synthesis of Polythioureas as Capacitor Dielectrics

Rui Ma, Vinit Sharma, Aaron F. Baldwin, Mattewos Tefferi, Ido Offenbach, Mukerrem Cakmak,

Yang Cao, Rampi Ramprasad, Gregory A. Sotzing*

*Correspondence to: sotzing@mail.ims.uconn.edu

Synthesis and Chemical Structure Determination

PDTA-ODA: To a dry 50ml 3-neck flask, 0.961g (5mmol) of para-phenylene diisothiocyanate 1.001g (5mmol) 4,4'-oxydianiline and 20ml NMP were added under inert atmosphere with stirring. After 6h at room temperature, the reaction mixture was poured into methanol with fibre-like precipitation, followed by washing with methanol and dried at 50°C *in vacuo* overnight. White precipitate was obtained in 91% yield (1.78g). FTIR: v_{max}/cm^{-1} 3210 (N-H st), 3030 (ar C-H st), 1510 (ar C-C), 1340 (C-N st), 1240 (C=S st), 1160 and 1010 (ar C-O-C st). ¹H NMR δ_{H} (500 MHz; DMSO-d⁶) 6.99 (4 H, d, benzene), 7.43 (4 H, s, benzene), 7.46 (4 H, d, benzene) and 9.72 (4 H, s, NH). Chain end: 4.98 (0.0736 H, s, NH₂), M_{n} =21537 g/mol.

PDTC-MDA: The preparation is similar to that of PDTC-ODA, with 0.961g (5mmol) of paraphenylene diisothiocyanate and 0.991g (5mmol) of 4,4'-diphenylmethanediamine. White fibre-like solid was obtained in 94 % yield (1.84g). FTIR: v_{max}/cm^{-1} 3220 (N-H st), 3020 (ar C-H st), 1510 (ar C-C), 1300 (C-N st), 1250 (C=S st). ¹H NMR δ_{H} (500 MHz; DMSO-d⁶) 3.88 (2 H, s, CH₂), 7.20 (4 H, d, benzene), 7.37 (4 H, s, benzene), 7.41 (4 H, d, benzene) and 9.71 (4 H, s, NH). Chain end: 5.24 (0.0280 H, s, NH₂), M_{n} =56360 g/mol.

PDTC-PhDA: The preparation is similar to that of PDTC-ODA, with 0.961g (5mmol) of paraphenylene diisothiocyanate and 0.991g (5mmol) of 4,4'-diphenylmethanediamine. White fibre-like solid was obtained in 94 % yield (1.84g). FTIR: v_{max}/cm^{-1} 3220 (N-H st), 3020 (ar C-H st), 1510 (ar C-C), 1310 (C-N st), 1250 (C=S st).

PDTC-HDA: The preparation is similar to that of PDTC-ODA, with 0.961g (5mmol) of paraphenylene diisothiocyanate and 0.581g (5mmol) of 1,6-diaminohexane. White fibre-like solid was obtained in 93 % yield (1.43g). FTIR: v_{max}/cm^{-1} 3220 (N-H st), 3020 (ar C-H st), 2930 (C-H st), 1510 (ar C-C), 1310 (C-N st), 1230 (C=S st). ¹H NMR δ_{H} (500 MHz; DMSO-d⁶) 1.32 (4 H, m, CH₂), 1.54 (4 H, m, CH₂), 3.45 (4 H, m, CH₂), 7.33 (4 H, s, benzene), 7.65 (2 H, s, NH), and 9.39 (2 H, s, NH). Chain end: 1.96 (0.0150 H, s, NH₂), M_{n} = 85121 g/mol.

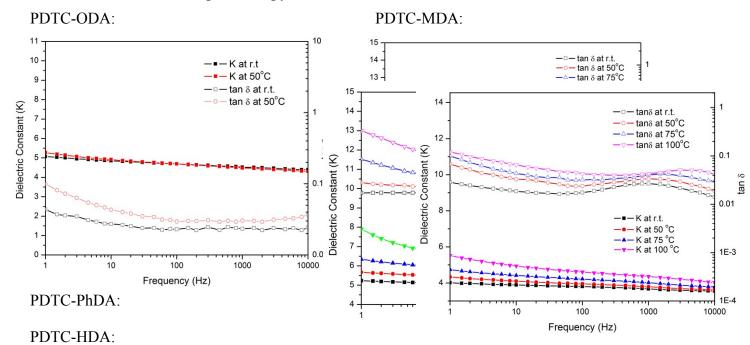
PDTC-HK511: The preparation is similar to that of PDTC-ODA, with 0.961g (5mmol) of paraphenylene diisothiocyanate and 1.10g (5mmol) of Jeffamine HK511. White fibre-like solid was obtained in 87 % yield (1.80g). FTIR: v_{max}/cm^{-1} 3230 (N-H st), 3040 (ar C-H st), 2973 (C-H st), 1510 (ar C-C), 1310 (C-N st), 1230 (C=S st), 1103 and 1038 (ar C-O-C st). ¹H NMR δ_H(500 MHz; DMSO-d⁶) 1.06-1.13 (7 H, m, Me), 3.52-3.56 (12 H, m, CH₂), 4.49 (2 H, m, CH), 7.36 (4 H, s, benzene), 7.52 (2 H, s, NH), and 9.44 (2 H, s, NH). Chain end: 1.27 (0.0641 H, s, NH₂), M_n = 25975 g/mol.

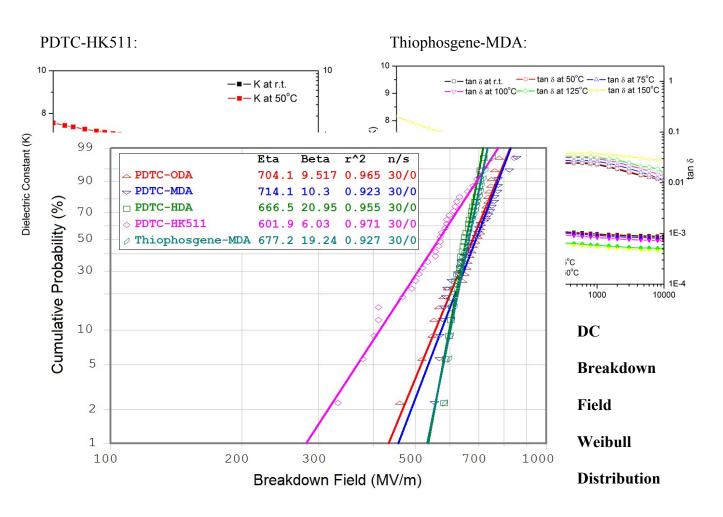
Thiophosgene-MDA: To a completely dried four neck flask equipped with dropping funnel, distillation and a safety trap, 3.96g 4,4'-diphenylmethanediamine and 2.26g 1,4-diazabicyclo [2.2.2]octane (DABCO) were well mixed then cooled with ice bath. 2.30g thiophosgene was

carefully and slowly added to the mixture through dropping funnel at 0°C. The reaction was then carried out at room temperature for 24h. Deionized water and methanol was used for precipitation and washing, followed by drying 50°C *in vacuo*. Light yellow fibre like polymer was obtained after purification in 85% yield (4.10g). FTIR: v_{max}/cm^{-1} 3210 (N-H st), 3020 (ar C-H st), 1510 (ar C-C), 1320 (C-N st), 1250 (C=S st). ¹H NMR δ_{H} (500 MHz; DMSO-d⁶) 3.86 (2 H, s, CH₂), 7.18 (4 H, d, benzene), 7.35 (4 H, d, NH), and 9.67 (2 H, s, NH). Chain end: 6.93 (0.0931 H, m, two benzene), M_{n} =44615 g/mol.

Thin Film Processing

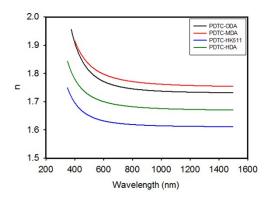
PDTC-ODA: A 10wt% DMSO solution was used for casting large scale film on a borosilicate glass substrate by Dr. Blade Film Applicator. The blade gap was 254μm. Films were casted at 80 °C followed by drying on the hot plate at 100 °C for 6h. After peeling off the glass, films were dried under vacuum at 120 °C overnight. The film thickness is 13-14μm.

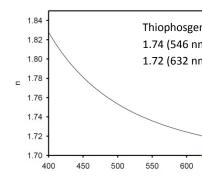

PDTC-MDA: A 10wt% DMAc solution was used for casting large scale film on a borosilicate glass substrate by Dr. Blade Film Applicator. The blade gap was 254μm. Films were casted at 60 °C followed by drying on the hot plate at 80 °C for 6h. After peeling off the glass, films were dried under vacuum at 100 °C overnight. The film thickness is 13-14μm.


PDTC-HDA: A 10wt% DMAc solution was used for casting large scale film on a borosilicate glass substrate by Dr. Blade Film Applicator. The blade gap was 500μm. Films were casted at 60 °C followed by drying on the hot plate at 80 °C for 6h. After peeling off the glass, films were dried under vacuum at 100 °C overnight. The film thickness is 9-10μm.

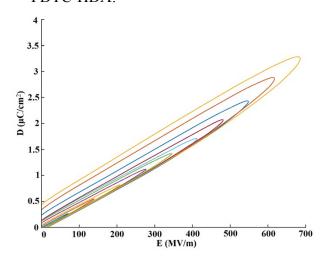
PDTC-HK511: A 15wt% DMAc solution was used for casting large scale film on a borosilicate glass substrate by Dr. Blade Film Applicator. The blade gap was 500μm. Films were casted at 70 °C followed by drying on the hot plate at 75 °C for 6h. After peeling off the glass, films were dried under vacuum at 100 °C overnight. The film thickness is 12-14μm.

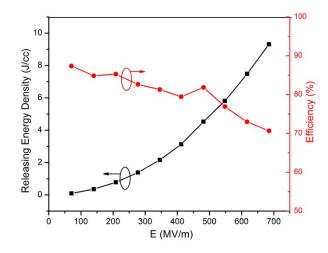
Thiophosgene-MDA: A 15wt% DMSO solution was used for casting large scale film on a borosilicate glass substrate by Dr. Blade Film Applicator. The blade gap was 254µm. Films were casted at 80 °C followed by drying on the hot plate at 100 °C for 6h. After peeling off the glass, films were dried under vacuum at 100 °C overnight. The film thickness is 11-13µm.

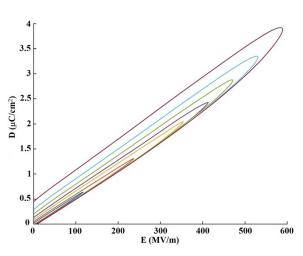

Time Domain Dielectric Spectroscopy

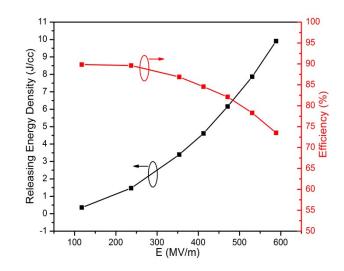


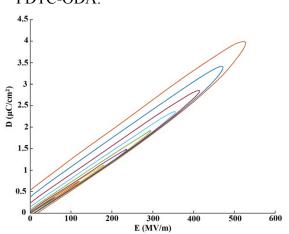
Refractive Index Measurement

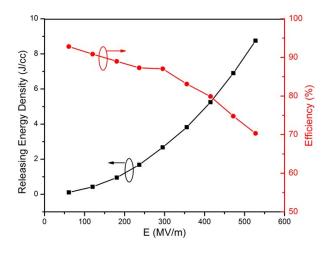

	546 (Green light)	632 (Red light)
PDTC-ODA	1.79	1.76
PDTC-MDA	1.81	1.79
PDTC-HK511	1.64	1.63
PDTC-HDA	1.71	1.70

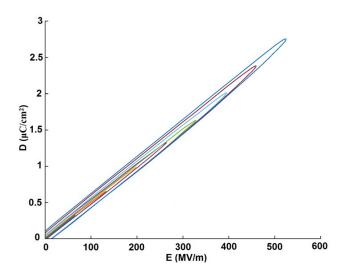


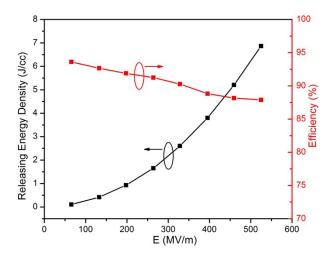

D-E Hysteresis Loop:

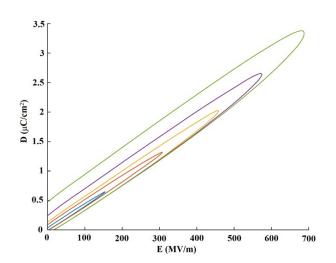

PDTC-HDA:

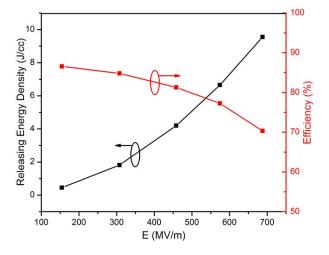



PDTC-MDA:




PDTC-ODA:




PDTC-HK511:

Thiophosgene-MDA:

