Carbides of group IVA, VA and VIA transition metals as alternative HER and ORR catalysts and support materials

Yagya N Regmi, Gregory R Waetzig, Kyle D Duffee, Samantha M Schmuecker, James M Thode and Brian M Leonard*

Department of Chemistry, University of Wyoming, Laramie, Wyoming, United States.

Supplementary Information

 Table S1: Eutectic salt flux composition, annealing temperatures and annealing times for the synthesis of TMCs.

M _x C _y	Molar ratio of salts	Annealing temperature (°C)	Annealing time (hr)
TiC	LiCl:KCl:KF = 58:40:2	960	5
V ₈ C ₇	LiCl:KCl:KF = 58:40:2	950	12
Cr ₃ C ₂	LiCl:KCl:KF = 58:40:2	950	12
ZrC	LiCl:KCl:KF = 58:40:2	950	12
Nb_4C_3	LiCl:KCl:KF = 58:40:2	950	12
Mo ₂ C	LiCl:KCl:KF = 58:40:2	950	12
HfC	LiCl:KCl:KF=58:40:2	750	5
TaC	LiCl:KCl:KF=58:40:2	950	12
WC	NaF:NaCl = 7:10	1050	36

Figure S1: XRD patterns of Pt/TMCs. The dashed lines indicate the three major diffraction peaks for Pt (PDF # 01-087-0640).

M _x C _y	A (m²/g)		
TiC	12.00 ± 0.21		
V ₈ C ₇	$\textbf{7.16} \pm \textbf{0.03}$		
Cr ₃ C ₂	$\textbf{18.53}\pm\textbf{0.16}$		
ZrC	40.73 ± 0.20		
Nb ₄ C ₃	$\textbf{10.07} \pm \textbf{0.71}$		
Mo ₂ C	31.32 ± 0.12		
HfC	28.80 ± 0.12		
TaC	29.01 ± 0.07		
WC	38.54 ± 2.26		
MWCNT	234.36 ± 1.00		

Table S2: BET surface area of MCs using N_2 as the adsorbent gas. MWCNT is the commercially available multiwalled carbon nanotubes.

Table S3: Concentration of Pt determined from ICP-OES. Three most intense wavelengths were used to measure the concentration. No interference was observed in any of the three wavelengths used in the measurements.

M _x C _y	PPM Pt	% Pt loading	
TiC	8.001	9.690	
V ₈ C ₇	10.371	12.560	
Cr ₃ C ₂	10.163	12.307	
ZrC	7.015	8.495	
Nb ₄ C ₃	7.751	9.387	
Mo ₂ C	5.956	7.212	
HfC	9.601	11.627	
TaC	9.119	11.044	
WC	5.333	6.458	

Figure S2: Line profile for TEM micrographs of Pt/WC. a) TEM micrograph of Pt/WC with fringe patterns for WC (light areas) and Pt (dark areas). b) Line profile of WC c) Line profile of Pt

Lattice plain	D-spacing (nm)		
Pt (111)	0.226		
Pt (002)	0.196		
Pt (022)	0.139		
Pt (113)	0.118		
WC (001)	0.284		
WC (010)	0.252		
WC (011)	0.188		
WC (110)	0.145		
WC (111)	0.129		
WC (012)	0.124		
WC (021)	0.115		
WC (112)	0.102		
MWCNT (002)	0.335		
MWCNT (011)	0.203		

Tabel S4: D-spacing for lattice planes of Pt, WC and multiwalled carbon nanotubes (MWCNT)

Equation S1 Potential (V) $_{RHE}$ = Potential (V) $_{Ag/Ag/Cl}$ + 0.197 + pH*0.059

Figure S3: HER current density of TMCs at -344 mV vs RHE measured at 2 mV/s and 2500 rpm in 0.1 M HClO_4 . Bare is unmodified glassy carbon electrode. The inset represents the controlled potential electrolysis plot for Mo₂C, WC, V₈C₇ and Cr₃C₂ recorded at -294 mV vs RHE, for 12 hours.

Figure S4: Tafel plots of HER polarization curves for a) TMCs in figure 4 and b) Pt/TMCs from figure 6. The best fit lines are included for each system. Ohmic drop correction was not applied to the polarization data.

Table S5: Tafel slopes and exchange current densities for TMCs and Pt/TMCs based on figure S4. Tafel slopes and exchange currents were generated by fitting the data to the Tafel equation $\eta = b \log (\mathbf{j}) + a$ where η is the overpotential, b is the tafel slope, \mathbf{j} is the current density corresponding to the overpotentials and a is the y-intercept. The exchange current densities were calculated when $\eta = 0 V$. Ohmic drop corrections were not applied.

	carbide		Pt/carbide	
	Tafel slope mV/decade	Exchange current $\mu A/cm^2$	Tafel slope mV/decade	Exchange current µA/cm ²
Mo ₂ C	124.8	2.86	38.0	6.27
WC	137.1	2.30	22.7	4.27
TaC	345.9	21.32	34.7	1.44
Nb_4C_3	209.4	2.01	33.4	22.10
Cr ₃ C ₂	283.7	20.43	27.8	20.22
С	NA	NA	38.7	32.10
ZrC	350.6	26.43	37.9	27.25
HfC	250.0	5.40	31.9	9.93
V ₈ C ₇	218.9	11.65	41.8	14.00
TiC	301.4	15.97	43.7	14.46

Figure S5: ORR current density of TMCs at -144 mV vs RHE measured at 50 mV/s and 1600 rpm in 0.1 M HClO_4 . Bare is unmodified glassy carbon electrode. The inset represents the LSV curves for 1^{st} and 1000^{th} cycles for Mo₂C and Cr₃C₂.

Figure S6: HER current densities from controlled potential indicated electrolysis at various applied potentials vs RHE for Mo_2C , Pt/Mo_2C , WC and Pt/WC for 48 hours at 2500 rpm in 0.1 M HClO₄.

Figure S7: HER current normalized to Pt loading from controlled potential electrolysis at -94 and -194 mV applied potentials for Pt/TiC for 12 hours at 2500 rpm in 0.1 M HClO_4 .