Electronic Supplementary Information

Synthesis of mesoporous carbon-silica nanocomposite watertreatment membranes using a triconstituent co-assembly method

Yen T. Chua, ${ }^{a}$ Chun Xiang C. Lin, ${ }^{b}$ Freddy Kleitz ${ }^{* c}$ and Simon Smart* ${ }^{* a}$

${ }^{a}$ School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
${ }^{b}$ Australian Institute of Biotechnology and Nanotechnology (AIBN), The University of Queensland, QLD 4072, Australia
${ }^{c}$ Department of Chemistry, 1045 Avenue de la Médecine, Université Laval, Québec, (QC) G1V 0A6, Canada
*Correspondence: s.smart@uq.edu.au (S.S.); freddy.kleitz@.chm.ulaval.ca (F.K.)

Experimental

Table S1 Compositions of carbon and silica precursors and surfactant for the synthesis of CSN materials.

	Resorcinol	Formaldehyde	TEOS	F127	F127/(Si+C)
$\mathbf{C S i}_{2.5}$	1	1.6	2.47	0.0326	0.0094
$\mathbf{C S i}_{3.7}$	1	1.6	3.70	0.0429	0.0094
$\mathbf{C S i}_{6.2}$	1	1.6	6.17	0.0326	0.0045

Figure S1 Schematic representation of the experimental set-up of the vacuum membrane distillation.

Results and Discussion

Figure S2 Nitrogen sorption cumulative pore volumes (right axes) and pore size distributions (left axes) of the $\mathrm{CSi}_{2.5}, \mathrm{CSi}_{3.7}$ and $\mathrm{CSi}_{6.2}$ samples calculated using the QSDFT method based on the adsorption branch of the isotherms and considering the model of carbon adsorbent with slit/cylindrical pore.

Chua, Y. T. et al.

Table S2 Deconvoluted results of $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ band in Gaussian components.

Sample	CSi ${ }_{2.5} 600$	CSi ${ }_{2.5} 700$	CSi ${ }_{2.5} 800$	CSi ${ }_{2.5} 900$
$\mathrm{v}_{1}(\mathrm{LO})\left(\mathrm{cm}^{-1}\right)$	1222.82	1214.06	1206.23	1198.93
FWHM (cm^{-1})	44.0463	50.1722	54.9779	54.8409
\boldsymbol{A} (\%)	2.33	3.43	4.45	4.50
$\mathbf{v}_{2}(\mathrm{LO})\left(\mathrm{cm}^{-1}\right)$	1164.33	1149.21	1137.87	1128.9
FWHM (cm^{-1})	98	98	98	97.199
\boldsymbol{A} (\%)	23.38	22.96	24.04	22.72
$\mathrm{v}_{3}(\mathrm{TO})\left(\mathrm{cm}^{-1}\right)$	1120.36	1101.04	1088.32	1080.92
FWHM (cm^{-1})	50	50	50	50
A (\%)	3.99	3.36	4.40	5.68
$\mathrm{v}_{4}(\mathrm{TO})\left(\mathrm{cm}^{-1}\right)$	1053.67	1045.84	1038.61	1032.03
FWHM (cm^{-1})	86	88	88	88
A (\%)	58.06	49.99	49.00	47.85
\boldsymbol{A} (4-fold) $/ \boldsymbol{A}$ (6-fold) (\%)	7.76	9.31	12.11	14.42

* A is the integrated area under the specific deconvoluted peak of each component. FWHM is full width half maximum of the peak. v is the frequency of each mode.

