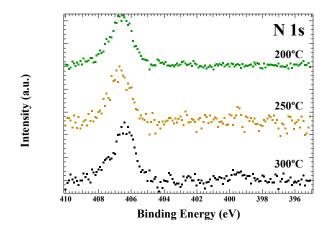
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Journal of Materials Chemistry A

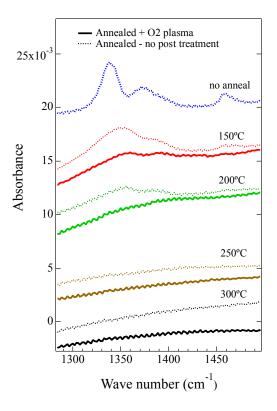
Supporting Information

Nickel oxide interlayer films from nickel formateethylenediamine precursor: Influence of annealing on thin film properties and photovoltaic device performance

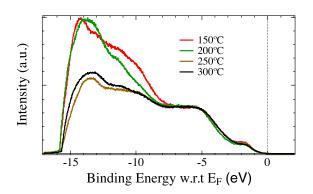
Cite this: DOI: 10.1039/x0xx00000x


K. X. Steirer,^{a,c,d*} R. E. Richards ^a, A. K. Sigdel,^{b,c‡} A. Garcia,^{c†} P. F. Ndione,^c S. Hammond,^c D. Baker,^{d#} E. L. Ratcliff,^e C. Curtis,^c T. Furtak,^d D. S. Ginley,^c D. C. Olson,^c N. R. Armstrong,^a J. J. Berry,^{3*}

Received 00th January 2012, Accepted 00th January 2012


DOI: 10.1039/x0xx00000x

www.rsc.org/


Supporting Information

S1: N 1s spectra for 200°C, 250°C and 300°C anneals showing the presence and high binding energy of N 1s photoelectrons. Spectra have been normalized.

S2: FTIR of NiOx films that were annealed at temperatures shown with and without O_2 -plasma post-treatment. The main peak in the no anneal film is due to the symmetric stretch mode, $v_s(COO)$ from nickel formate. Note the shift to higher wavenumbers as the films are annealed and O_2 -plasma treated.

S3: UPS of spin-cast (NiO_x) thin films on ITO after annealing at the temperatures shown. All films received O₂-plasma treatment after annealing. Spectra are normalized to the O 2p photoemission features near -5.5 eV. Features between -7 eV and -14 eV may arise from N in the lower temperature (150°C and 200°C) annealed samples.

Notes and references

a Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA.

b Department of Physics and Astronomy, University of Denver, Denver, Colorado, USA.

c National Renewable Energy Laboratory, Golden, Colorado, USA.

d Applied Physics Department, Colorado School of Mines, Golden, Colorado, USA.

e Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona, USA.

[‡] Present address: Intel Corporation, Portland, OR, USA.

† Present address: Next Energy Technologies Inc. Santa Barbara, CA, USA.

Present address: Washington Nanofabrication Facility at the University of Washington, Seattle WA, USA.