Ab initio study of doping effects in LiMnO₂ and Li₂MnO₃ cathode materials for Li-ion batteries

Fantai Kong,[†] Roberto C. Longo,[†] Min-Sik Park,[‡] Jaegu Yoon,[‡] Dong-Hee Yeon,[‡] Jin-Hwan Park,[‡] Weihua Wang,[†] Santosh KC,[†] Seok-Gwang Doo^{*,‡} and Kyeongjae Cho^{*,†}

[†]Materials Science & Engineering Dept., The University of Texas at Dallas, Richardson, TX 75080, United States

*Energy Lab., Samsung Advanced Institute of Technology, Samsung Electronics, Yongin 446-712, Republic of Korea

Support information

Tables

Table S1. Formation energy of Fe, Nb, Cu doped Li₂MnO₃, LiMnO₂ and LiMn₂O₄.

	Form	nation energy (eV/a	tom)
	Fe	Nb	Cu
Li ₂ MnO ₃	-2.037	-2.132	-2.006
LiMnO ₂	-2.143	-2.199	-2.100
LiMn ₂ O ₄	-1.934	-2.127	-1.904

Table S2 (a). Redox potential of doped LiMnO₂.

	Dopants					
	Mg	Ti	V	Nb	F	
8.33% Li	3.22 V	2.57 V	2.90 V	2.70 V	2.84 V	
16.67% Li	3.41 V	3.62 V	3.66 V	3.03 V	3.69 V	
25% Li	3.40 V	3.50 V	3.39 V	3.45 V	-	

	Dopants					
	V	Nb	Fe	Ru	F	
6.25% Li	3.35 V	2.18 V	3.85 V	3.38 V	3.65 V	
12.5% Li	4.60 V	4.57 V	4.68 V	4.30 V	4.54 V	

Figures

Figure S1. (a) Observed Mn-O distortion during the migration of Lithium along TSH- V_{Li} path and (b) the ODH diffusion path, doping site and nearest neighboring Mn of the dopant (Mn_{NN}) in doped LiMnO₂.

Figure S2. Mn and O atomic displacements for Li diffusion from the initial to the transition state along ODH (a) and TSH- V_{Li} paths (b).

Figure S3. Band structure of LiMnO₂.

Figure S4. Charge density of hole in Al doped LiMnO₂. (a) Hole distributed through the whole structure and (b) the hole is localized on Mn.

Figure S5. Band structure of Li₂MnO₃.

Figure S6. (a) Configuration of M doped Li_2MnO_3 , where M is the dopant, p1 and p2 are two polaron sites. (b) Charge density of extra electron in Al doped Li_2MnO_3 .

Figure S1. (a) Observed Mn-O distortion during the migration of Lithium along TSH- V_{Li} path and (b) the ODH diffusion path, doping site and nearest neighboring Mn of the dopant (Mn_{NN}) in doped LiMnO₂.

Figure S2. Mn and O atomic displacements for Li diffusion from the initial to the transition state along ODH (a) and $TSH-V_{Li}$ paths (b).

Figure S3. Band structure of LiMnO₂.

Figure S4. Charge density of hole in Al doped LiMnO₂. (a) Hole distributed through the whole structure and (b) the hole is localized on Mn.

Figure S5. Band structure of Li_2MnO_3 .

Figure S6. (a) Configuration of M doped Li₂MnO₃, where M is the dopant, p1 and p2 are two polaron sites. (b) Charge density of extra electron in Al doped Li₂MnO₃.