Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI) for Journal of Materials Chemistry A

Carbon Dots Modified Mesoporous Organosilica as an Adsorbent for the Removal of 2, 4-Dichlorophenol and Heavy Metal Ions

Lingzhi Wang^{1,2}, Chen Cheng¹, Juying Lei, Sen Tapas³, Masaya Matsuoka⁴, Jinlong Zhang^{1*}, Fan Zhang^{2*}

¹Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and

Technology, Shanghai, 200237, P. R. China

²Department of Chemistry and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.

R. China

³Centre for Materials Science, Institute of Nanotechnology and Bioengineering, School of Forensic and

Investigative Sciences, University of Central Lancashire, Preston, UK

⁴Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka

599-8531, Japan

CORRESPONDING AUTHOR: Jinlong Zhang; Fan Zhang

E-mail: jlzhang@ecust.edu.cn; zhang_fan@fudan.edu.cn

Adsorption formulas

The adsorbed amount was calculated using equation (1), where q_e represents the adsorption capacity (mg/g) of the adsorbent at equilibrium. C_0 and C_e are the initial and equilibrium concentrations of metal ions (mg/L), respectively. V is the volume of the aqueous solution (L), while W is the mass (g) of adsorbent.

$$q_e = \frac{(c_o - c_e)}{W} V$$
 ------Equation (1)

To verify the adsorption type, the batch adsorption experiment data were fitted by Langmuir¹ and Freundlich² models respectively. The Langmuir model was used to characterize the maximum adsorption capacity of the adsorbents, which is expressed as equation (2):

$$\frac{C_e}{q_e} = \frac{1}{bq_m} + \frac{C_e}{q_m}$$
------Equation (2)

Where q_m stands for the maximum adsorption capacity (mg/g) of the adsorbents, and b represents the strength of adsorption capacity (L/mg). A larger value of b reflects a better adsorption performance.

The Freundlich model is a kind of semi-empirical equation suitable for the description of heterogeneous adsorption, which it is expressed as equation (3):

$$\log q_e = \log K_f + \frac{1}{n} \log C_e$$
 ------Equation (3)

Where K_f stands for the Freundlich constant about the adsorption capacity of the adsorbents (mg/g), and 1/n is the intensity of the adsorption performance (L/mg). A smaller value of 1/n means a better adsorption performance.

We used two simplified kinetic models of Lagergren pseudo-first-order and pseudo-

second-order models³ to process the data, which are expressed as equation (4) and (5) respectively:

Pseudo-first-order model:

 $\ln(q_e - q_t) = \ln q_e - k_1 t$ -----Equation (4)

Pseudo-second-order model:

 $\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$ -----Equation (5)

Where q_t represents the adsorption at time t (min), q_e is the adsorption capacity at adsorption equilibrium obtained through experiments, k_1 and k_2 are the kinetic rate constants for the pseudo first and second order models, respectively.

Sample	Freundlich model			
	K _f 1/n		\mathbb{R}^2	
	(mg/g)	(L/mg)		
MS-ex (10°C)	6.22	0.36	0.907	
CD-MS (10℃)	23.86	0.22	0.870	

Table S1 Adsorption parameters fitted from Freundlich equation

Table S2 Kinetic parameters for 2, 4-DCP adsorption on CD-MS

Kinetic Models		Kinetic constants	
	q _e	k	R ²
	(mg/g)	(g/(mg • min))	
Pseudo-1st-order-model	62.70	2.01×10^{-2}	0.971
		2.01/10	
Pseudo-2nd-order- model	99.90	7.93×10 ⁻⁴	0.999

Table S3 Adsorption parameters fitted from Langmuir equation and kinetic parameters of metal ions on CD-MS fitted from pseudo-first-order equations

Adsorbate	Langmuir curve]	Pseudo-first-order model			
	q _m (mg/g)	$b \times 10^{-2}$	R ²	q _e (mg/g)	q _{e1} (mg/g)	k_1 (g/(mg • min))	R ²	
		(L/mg)						
Cu (II)	109.05	1.60	0.915	66.14	42.34	0.07	0.902	
Pb (II)	140.25	1.00	0.880	100.18	83.62	0.11	0.995	
Hg (II)	173.01	2.30	0.701	128.87	146.79	0.12	0.958	

Table S4 Thermodynamic parameters for the metal ion adsorption at different temperatures

Temper	ature Freundlich mode	el Cu	Cu(II)/Pb(II)/Hg(II)		
(°C)	$\frac{Kf}{(mg^{1-(1/n)}L^{1/n}g^{-1})}$	n	R ²		
25	3.23/2.60/7.41	1.53/1.38/1.55	0.997/0.993/0.974		
35	2.80/4.85/6.69	1.37/1.27/1.34	0.995/0.999/0.993		

CD-WS in the present study and by some recently reported adsorbents						
Adsorbent	Cu(II)	Hg(II)	Pb(II)	2,4-DCP	Reference	
Vinyl silica hollow spheres	54.7		75.6		4	
Diamine modified mesoporous	66.58		~70		5	
silica						
Diamine-functionalized SBA-15	27.22		96.43		6	
Mercapto-Modified Silica		115.87	10.42		7	
Particles						
Sulfur-Functionalized Silica		63.2			8	
Microspheres						
Silica gel func tionalized with a	41.6				9	
ditopic zwitterionic Schiff base						
ligand						
Multifunctional fibrous silica		115.47			10	
composite						
Thiourea-containing silica gel		148			11	
hybrid materials						
Organoclays			33.78	96.15	12	
Agricultural Solid Waste				19.12	13	
Organobentonite				281.8	14	
Polyaniline/silica gel composites				49.5	15	
based surface imprinted polymers						
(MIP-PAS)						
Carbon dots modified	66.06	128.824	100.02	99.70	This work ^a	
mesoporous silica						

Table S5 The maximum adsorption capacity values (mg/g) of Cu (II), Hg (II), Pb (II) and 2,4-DCP by CD-MS in the present study and by some recently reported adsorbents

^a The initial concentration of Hg (II) and Pb (II) is 10⁻³ M; Cu (II): 2*10⁻³ M; temperature: 25 °C, pH=7.0.

Figure S1 TEM image of CD-MS.

Figure S2 1 H 2D DOSY-NMR spectrum of the CD in CCl₃D. The diffusion coefficient of the cyclodextrin standard was measured as $10^{-9.25}$ m² s⁻¹. An average diffusion coefficient of CD was measured as $10^{-9.08}$ m² s⁻¹. The size of CD was determined to be $1.4 \times (10^{-9.25}/10^{-9.08}) \approx 1.0$ nm, where 1.4 is the size of reference of cyclodextrin.

Figure S3 Fitting curves of Langmuir (a) and Freundlich (b) models for the 2, 4-DCP adsorption.

Figure S4 Fitting curves of Langmuir model for the 2, 4-DCP adsorption on CD-MS at different temperatures.

Figure S5 Fitting curves of Level 1(a) and Level 2(b) dynamic models of the 2, 4-DCP adsorption on CD-MS. The initial concentration of 2, 4-DCP is 60 mg/L.

Figure S6 The reusability performance of CD-MS to the adsorption of 2, 4-DCP. Initial concentration of 2, 4-DCP is 20 mg/L; contact time: 4h; temperature: 25 ± 1 °C; adsorbent dose: 0.2 g/L.

Figure S7 Fitting curves of Langmuir (a) and Freundlich (b) models for metal ion adsorption on CD-MS.

Figure S8 Fitting curves of Freundlich model for the adsorption of Cu (II) (a), Pb (II) (b) and Hg (II) (c) at different temperatures.

Figure S9 Fitting curves of Level 1 (a) and Level 2(b) dynamic models for metal ions adsorption on CD-MS.

Figure S10 The reusability performance of CD-MS to the adsorption of metal ions. Initial concentration of Cu (II), Pb II) and Hg II) is 10^{-3} M; contact time:3 h; temperature: 25 ± 1 °C; Adsorbent dose: 1 g/L.

References

- 1. M. Anbia and M. Lashgari, Chem. Eng. J, 2009, 150, 555-560.
- 2. K.-Y. Shin, J.-Y. Hong and J. Jang, J. Hazard. Mater, 2011, 190, 36-44.
- 3. F. Ge, M.-M. Li, H. Ye and B.-X. Zhao, J. Hazard. Mater, 2012, 211, 366-372.
- 4. J. Hu, X. Wang, L. Liu and L. Wu, J. Mater. Chem. A, 2014, 2, 19771-19777.
- 5. W. Yang, P. Ding, L. Zhou, J. Yu, X. Chen and F. Jiao, *Appl. Surf. Sci*, 2013, 282, 38-45.
- 6. Z. Wang, M. Wang, G. Wu, D. Wu and A. Wu, *Dalton Trans*, 2014, 43, 8461-8468.
- 7. A. Košak, A. Lobnik and M. Bauman, Int. J. Appl. Ceram. Technol, 2013. DOI: 10.1111/ijac.12180
- 8. N. Saman, K. Johari and H. Mat, Ind & Eng. Chem. Res, 2013, 53, 1225-1233.

- 9. Q. Wang, W. Gao, Y. Liu, J. Yuan, Z. Xu, Q. Zeng, Y. Li and M. Schröder, *Chem. Eng. J*, 2014, 250, 55-65.
- 10. Z. Sun, D. Guo, L. Zhang, H. Li, B. Yang and S. Yan, J. Mater. Chem. B, 2015, 3, 3201-3210.
- 11. Y. Niu, H. Liu, R. Qu, S. Liang, H. Chen, C. Sun and Y. Cui, *Ind & Eng. Chem. Res*, 2015. DOI: 10.1021/ie5046928
- 12. L. Huang, Y. Zhou, X. Guo and Z. Chen, J. Ind. Eng. Chem, 2014. DOI:10.1016/j.jiec.2014.07.021
- 13. C. Namasivayam and D. Kavitha, Separ. Sci. Technol, 2005, 39, 1407-1425.
- 14. Y. Zhou, X.-Y. Jin, H. Lin and Z.-L. Chen, *Chem. Eng. J*, 2011, 166, 176-183.
- 15. J. Pan, H. Yao, W. Guan, H. Ou, P. Huo, X. Wang, X. Zou and C. Li, *Chem. Eng. J*, 2011, 172, 847-855.