
# Co-sensitization of 3D Bulky Phenothiazine-cored Photosensitizer with Planar Squaraine Dye for Efficient Dye-Sensitized Solar Cells

Yong Hua,<sup>a</sup> Lawrence Tien Lin Lee,<sup>b</sup> Caishun Zhang,<sup>c</sup> Jianzhang Zhao,<sup>c</sup> Tao Chen,<sup>\*b</sup> Wai-Yeung Wong,<sup>\*a</sup> Wai-Kwok Wong,<sup>\*a</sup> and Xunjin Zhu<sup>\*a</sup>



Scheme S1. Synthetic routes for TP1–TP4. (a) KOH, RBr, DMSO, rt; (b) Cu,  $K_2CO_3$ , 18crown-6, RBr, *o*-dichlorobenzene, reflux; (c) DMF, POCl<sub>3</sub>, ClCH<sub>2</sub>CH<sub>2</sub>Cl<sub>1</sub> reflux; (d) NBS, THF, 0°C; (e) Pd(PPh<sub>3</sub>)<sub>4</sub>, 4-(diphenylamino)phenyl boronic acid, 2N K<sub>2</sub>CO<sub>3</sub>, THF, reflux; (f) cyanoacetic acid, CH<sub>3</sub>COOH, CH<sub>3</sub>COONH<sub>4</sub>, 120°C.

# Synthetic procedure

# 10-Hexyl-10*H*-phenothiazine (1a)

Phenothiazine (5.0g, 25.1mmol) and 1-bromohexane (8.7g, 26mmol) were dissolved in 50mL DMSO and stirred for 30min at room temperature. Potassium hydroxide (2.8g, 50mmol) was slowly added and stirred for overnight at room temperature. The reaction mixture was poured into water and extracted with chloroform. The organic layer was separated and dried with anhydrous magnesium sulfate. The product was purified using column chromatography with hexane as the solvent. The product was obtained as light yellow oil. Yield: 6.0 g (85%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.118–7.148 (m, 4H), 6.828–6.855 (m, 4H), 3.340 (t, *J* = 6.9 Hz,

2H), 1.741–1.869 (m, 2H), 1.255–1.426 (m, 6H), 0.867 (t, J = 5.1 Hz, 3H). HRMS (MALDI-TOF, m/z): [M<sup>+</sup>] calcd for (C<sub>18</sub>H<sub>21</sub>NS) 283.1445; found, 283.1456.

#### General procedures for the preparation of compounds 1b-1d.

A mixture of 10*H*-phenothiazine (2.0 g, 10 mmol), 1-(hexyloxy)-4-iodobenzene (or 9-hexyl-3iodo-9H-carbazole or 9,9-dihexyl-2-iodo-9H-fluorene) (11 mmol),  $K_2CO_3$  (1.7 g, 12.5 mmol), copper powder (0.4 g, 6.2 mmol) and 18-crown-6 (0.08 g, 0.3 mmol) in *o*-dichlorobenzene (20 mL) was heated to reflux overnight under a  $N_2$  atmosphere. Then, the solvent was removed under vacuum and the residue was purified by column chromatography on silica gel using a 4:1 mixture of hexane and  $CH_2Cl_2$  as eluent to afford the products as white solid.

**10-(4-(Hexyloxy)phenyl)-10***H***-phenothiazine (1b)** Yield: 2.43g, (65%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 7.30 (t, *J* = 2.8 Hz, 1H), 7.28 (t, *J* = 2.8 Hz, 1H), 7.10 (t, *J* = 2.8 Hz, 1H), 7.08 (t, *J* = 2.8 Hz, 1H), 6.99 (d, *J* = 1.6 Hz, 1H), 6.97 (d, *J* = 1.6 Hz, 1H), 6.76-6.85 (m, 4H), 4.03 (t, *J* = 1.6 Hz, 2H), 1.82-1.86 (m, 2H), 1.40-1.53 (m, 2H), 1.36–1.39 (m, 4H), 0.86 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 158.87, 144.70, 132.21, 126.81, 126.59, 122.21, 119.62, 116.37, 115.65, 68.34, 31.62, 29.27, 25.79, 22.64, 14.07. HRMS (MALDI-TOF, m/z): [M+] calcd for (C<sub>24</sub>H<sub>25</sub>NOS) 375.1717; found, 375.1720.

## 10-(9-Hexyl-9H-carbazol-2-yl)-10H-phenothiazine (1c)

Yield: 2.77g, (62%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.25$  (s, 1H), 8.21 (d, J = 8.0 Hz, 2H), 7.88 (t, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.45-7.50 (m, 2H), 7.17 (t, J = 8.0 Hz, 2H), 6.77-6.85 (m, 4H), 4.44 (t, J = 7.2 Hz, 2H), 1.74–1.86 (m, 2H), 1.24–1.25 (m, 6H), 0.82 (t, J =7.2 Hz, 3H) ppm. <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 146.43$ , 140.55, 139.01, 132.66, 131.44, 130.09, 129.08, 128.98, 127.10, 126.24, 126.00, 125.33, 124.55, 122.89, 121.84, 119.09, 114.66, 111.40, 43.34, 31.95, 28.50, 26.14, 22.09, 13.87 ppm. HRMS (MALDI-TOF, *m/z*): [M<sup>+</sup>] calcd for (C<sub>30</sub>H<sub>28</sub>N<sub>2</sub>S) 448.2067; found, 448.2069.

# 10-(9,9-Dihexyl-9H-fluoren-2-yl)-10H-phenothiazine (1d)

Yield: 3.77g, (71%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.12$  (s, 1H), 7.90-7.94 (m, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.18-7.22 (m, 4H), 7.05 (d, J = 8.0 Hz, 2H), 6.86-6.97 (m, 4H), 6.76 (s, 1H), 3.45 (t, J = 8.8 Hz, 4H), 1.45–1.47 (m, 4H), 1.28–1.37 (m, 12H), 0.88 (t, J = 8.8 Hz, 6H) ppm. <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 154.76$ , 150.35, 142.77, 136.77, 135.89, 133.45, 131.96, 130.51, 127.65, 127.59, 125.27, 124.73, 123.90, 123.23, 115.92, 115.86, 114.95, 93.5, 65.78, 48.16, 31.39, 26.71, 26.52, 22.60, 14.00 ppm. HRMS (MALDI-TOF, *m/z*): [M<sup>+</sup>] calcd for (C<sub>37</sub>H<sub>41</sub>NS) 531.3087; found, 531.3090.

# General procedures for the preparation of 2a-2d.

**1a-1d** (10mmol) and dry DMF (0.73g, 10mmol) was dissolved in 1,2-dichloroethane (20mL), then phosphrous oxychloride (1.54g, 10mmol) was added slowly at 0 °C in an ice water bath. The mixture was heated to reflux for overnight was and quenched with water and extracted three times with chloroform. The combined organic fraction was washed with brine and dried over MgSO<sub>4</sub>. The solvent was removed under reduced pressure and the residue was purified by column chromatography using silica gel and n-hexane/ethylacetate (8/2; v/v) as the eluent to give yellow solids, respectively.

#### 10-Hexyl-10*H*-phenothiazine-3-carbaldehyde (2a)

Yield: 1.71 g (55%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 9.78 (s, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.56 (s, 1H), 7.11 (t, J = 8.0 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 6.86 (t, J = 8.0 Hz, 1H), 3.87 (t, J = 6.4 Hz, 2H), 1.27–1.32 (m, 6H), 0.85 (t, J = 6.4 Hz, 3H). HRMS (MALDI-TOF, m/z): [M+] calcd for (C<sub>19</sub>H<sub>21</sub>NOS) 311.1355; found, 311.1366.

#### 10-(4-(Hexyloxy)phenyl)-10H-phenothiazine-3-carbaldehyde (2b)

Yield: 1.82 g, (70%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 9.80 (s, 1H), 7.33 (t,J= 8.0 Hz, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.25 (t, J = 8.0 Hz, 1H), 7.13 (t, J = 8.0 Hz, 1H), 7.01 (d, J = 8.0 Hz, 1H), 6.97 (d, J = 8.0 Hz, 2H), 6.67-6.78 (m, 4H), 4.13 (t, J = 7.2 Hz, 2H), 1.83-1.86 (m, 2H), 1.42-1.56 (m, 2H), 1.34–1.38 (m, 4H), 0.88 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 188.98, 162.87, 145.75, 134.21, 129.38, 127.81, 126.57, 122.27, 119.68, 116.77, 115.69, 68.64, 30.45, 29.28, 25.77, 22.66, 14.03. HRMS (MALDI-TOF, m/z): [M+] calcd for (C<sub>25</sub>H<sub>25</sub>NO<sub>2</sub>S) 403.1677; found, 403.1686.

## 10-(9-Hexyl-9H-carbazol-2-yl)-10H-phenothiazine-3-carbaldehyde (2c)

Yield: 1.67 g, (56%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 9.85 (s, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 8.09 (d, *J* = 8.0 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 2H), 7.65 (s, 1H), 7.45-7.48 (m, 2H), 7.29-7.31 (m, 2H), 7.16 (d, *J* = 8.0 Hz, 1H), 6.77-6.85 (m, 4H), 4.47 (t, *J* = 7.2 Hz, 2H), 1.79–1.85 (m, 2H), 1.26–1.28 (m, 6H), 0.82 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 187.89, 144.41, 140.53, 139.21, 130.96, 127.98, 127.14, 126.38, 126.30, 122.54, 121.82, 120.88, 119.03, 118.40, 115.68, 111.40, 19.55, 42.38, 30.94, 28.55, 26.16, 22.03, 13.83. HRMS (MALDI-TOF, m/z): [M+] calcd for (C<sub>31</sub>H<sub>28</sub>N<sub>2</sub>OS) 476.1984; found, 476.1986.

#### 10-(9,9-Dihexyl-9H-fluoren-2-yl)-10H-phenothiazine-3-carbaldehyde (2d)

Yield: 1.83 g, (67%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 9.87 (s, 1H), 7.87 (d, *J* = 6.4 Hz, 1H), 7.55 (d, *J* = 6.4 Hz, 2H), 7.47 (s, 1H), 7.39-7.43 (m, 2H), 7.32-7.38 (m, 2H), 7.28 (t, *J* = 6.4 Hz, 2H), 6.83-6.90 (m, 2H), 6.27-6.29 (m, 2H), 4.35 (t, *J* = 7.6 Hz, 4H), 1.94-1.99 (m, 4H), 1.37-1.41 (m, 4H), 1.32-1.35 (m, 8H) 0.87-0.89 (t, *J* = 5.2 Hz, 6H). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 188.04, 154.39, 148.65, 143.47, 141.23, 139.97, 132.18, 131.31, 129.86, 128.89, 127.15, 126.78, 125.13, 124.56, 123.86, 122.29, 121.43, 120.11, 119.58, 118.89, 117.93, 115.96, 110.96,

109.23, 92.38, 44.48, 31.98, 29.03, 27.65, 22.76, 14.03. HRMS (MALDI-TOF, m/z): [M<sup>+</sup>] calcd for (C<sub>38</sub>H<sub>41</sub>NOS) 559.2912; found, 559.2916.

#### General procedures for the preparation of 3a-3d.

NBS (411 mg, 2.31 mmol) was added in one portion to the solution of **2a-2d** (2.0 mmol) in THF (50 mL) at 0 °C. The mixture was allowed to warm to room temperature and continued the stirring for 1.5 h. Then the reaction was quenched by addition of water (50 mL), and extracted with DCM. The collected organic layer was evaporated under vacuum and the residue was purified by column chromatography on silica gel with  $CH_2Cl_2$  as eluent to give the products as yellow solid.

# 7-Bromo-10-hexyl-10H-phenothiazine-3-carbaldehyde (3a)

Yield: 700 mg, (90%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 9.80 (s, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.13 (t, *J* = 8.0 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.85 (t, *J* = 8.0 Hz, 1H), 3.89 (t, *J* = 6.4 Hz, 2H), 1.78-1.90 (m, 2H), 1.28–1.32 (m, 6H), 0.86 (t, *J* = 6.4 Hz, 3H). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 189.91, 150.32, 142.63, 131.33, 130.35, 130.12, 129.38, 128.54, 126.61, 124.44, 117.41, 115.48, 115.20, 48.10, 31.43, 26.56, 26.64, 22.36, 14.01. HRMS (MALDI-TOF, m/z): [M+] calcd for (C<sub>19</sub>H<sub>20</sub>BrNOS) 389.0413; found, 389.0422.

#### 7-Bromo-10-(4-(hexyloxy)phenyl)-10H-phenothiazine-3-carbaldehyde (3b)

Yield: 580 mg, (89%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 9.69 (s, 1H), 7.27-7.29 (m, 1H), 7.21-7.23 (m, 2H), 7.10-7.14 (m, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.88-6.91 (m, 1H), 6.18 (d, *J* = 8.0 Hz, 1H), 5.99 (d, *J* = 8.0 Hz, 1H), 4.03 (t, *J* = 6.4 Hz, 2H), 1.78-1.84 (m, 2H), 1.50-1.61 (m, 2H), 1.36–1.38 (m, 4H), 0.93 (t, *J* = 6.4 Hz, 3H). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 189.65, 159.45, 149.13, 142.19, 131.69, 131.45, 131.13, 130.09, 129.75, 128.75, 127.49, 121.20, 119.31, 117.61, 116.48, 115.70, 115.20, 68.45, 31.60, 29.21, 25.77, 22.63, 14.06. HRMS (MALDI-TOF, m/z): [M+] calcd for (C<sub>25</sub>H<sub>24</sub>BrNO<sub>2</sub>S) 481.0713; found, 481.0721.

# 7-Bromo-10-(9-hexyl-9H-carbazol-3-yl)-10H-phenothiazine-3-carbaldehyde (3c)

Yield: 500 mg, (87%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 9.68 (s, 1H), 8.05-8.07 (m, 2H), 7.62-7.65 (m, 2H), 7.48-7.54 (m, 2H), 7.45 (t, *J* = 7.2 Hz, 2H), 7.35-7.38 (m, 2H), 7.29 (d, *J* = 7.2 Hz, 1H), 7.22-7.25 (m, 1H), 6.83-6.86 (m, 1H), 4.38 (t, *J* = 6.4 Hz, 2H), 1.91-1.97 (m, 2H), 1.41-1.49 (m, 2H), 1.28–1.37 (m, 4H), 0.94 (t, *J* = 6.4 Hz, 3H). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 189.65, 149.54, 142.60, 142.48, 141.06, 139.94, 131.08, 131.00, 130.39, 130.14, 129.70, 129.43, 128.71, 128.62, 127.36, 126.74, 124.80, 122.25, 121.16, 115.60, 115.45, 115.40, 111.36, 111.06, 109.27, 43.50, 31.63, 29.05, 27.07, 22.62, 14.08. HRMS (MALDI-TOF, m/z): [M+] calcd for (C<sub>31</sub>H<sub>27</sub>BrN<sub>2</sub>OS) 554.1012; found, 554.1025.

# 7-Bromo-10-(9,9-dihexyl-9H-fluoren-2-yl)-10H-phenothiazine-3-carbaldehyde (3d)

Yield: 460 mg, (91%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 9.69 (s, 1H), 7.94 (d, J = 6.4 Hz, 1H), 7.76-7.78 (m, 1H), 7.46 (d, J = 6.4 Hz, 1H), 7.39-7.40 (m, 3H), 7.29-7.31 (m, 2H), 7.24-7.28 (m, 2H), 7.09 (d, J = 7.2 Hz, 1H), 6.85-6.88 (m, 2H), 2.01 (t, J = 6.4 Hz, 4H), 1.31-1.37 (m, 4H), 1.17-1.25 (m, 4H), 1.07-1.23 (m, 8H), 0.78 (t, J = 6.4 Hz, 6H). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 189.67, 148.56, 143.61, 141.43, 141.02, 139.95, 131.01, 131.00, 130.27, 130.15, 129.76, 129.41, 128.73, 128.34, 127.37, 126.75, 124.90, 123.23, 121.16, 115.61, 115.40, 114.40, 112.36, 111.15, 109.29, 65.78, 43.51, 31.77, 29.01, 27.08, 22.34, 14.00. HRMS (MALDI-TOF, m/z): [M+] calcd for (C<sub>38</sub>H<sub>40</sub>BrNOS) 637.2011; found, 637.1921.

## General procedures for the preparation of 4a-4d.

A mixture of **3a-3d** (0.30 mmol), (4-(diphenylamino)phenyl)boronic acid (115 mg, 0.40 mmol),  $Pd(PPh_3)_4$  (25 mg, 0.04 mmol) and 2N aqueous solution of K<sub>2</sub>CO<sub>3</sub> (2 mL) in THF (10 mL) was

heated to reflux under a  $N_2$  atmosphere for about 12 hrs. Then, the solvent was removed under vacuum and the residue was purified by column chromatography on silica gel using a 1:4 mixture of hexane and  $CH_2Cl_2$  as eluent to afford **4a–4d** as red solids, respectively.

# 7-(4-(Diphenylamino)phenyl)-10-hexyl-10H-phenothiazine-3-carbaldehyde (4a)

Yield: 120 mg, (71%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 9.65 (s, 1H), 7.90-7.93 (m, 1H), 7.79 (d, J = 2.0 Hz, 1H), 7.56 (d, J = 2.0 Hz, 2H), 7.41-7.46 (m, 1H), 7.40 (d, J = 2.0 Hz, 1H), 7.32 (t, J = 7.6 Hz, 4H), 7.11 (d, J = 7.6 Hz, 1H), 6.87-6.94 (m, 10H), 3.94 (t, J = 6.8 Hz, 4H), 1.67-1.70 (m, 2H), 1.34-1.40 (m, 2H), 1.24-1.26 (m, 4H), 0.84 (t, J = 6.8 Hz, 3H). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 189.77, 148.40, 146.88, 141.12, 134.95, 132.43, 130.09, 129.51, 129.00, 128.02, 125.44, 124.19, 123.88, 123.13, 122.98, 122.65, 122.54, 116.88, 116.23, 115.45, 99.60, 46.94, 30.69, 26.01, 25.68, 22.06, 14.01. HRMS (MALDI-TOF, m/z): [M+] calcd for (C<sub>37</sub>H<sub>34</sub>N<sub>2</sub>OS) 554.2419; found, 554.2422.

# 7-(4-(Diphenylamino)phenyl)-10-(4-(hexyloxy)phenyl)-10*H*-phenothiazine-3-carbaldehyde (4b)

Yield: 100 mg, (68%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 9.67 (s, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.22-7.25 (m, 2H), 7.18-7.22 (m, 7H), 7.07-7.11 (m, 2H), 6.99-7.06 (m, 6H), 6.95-6.97 (m, 2H), 6.10-6.13 (m, 2H), 3.97 (t, *J* = 7.6 Hz, 2H), 1.75-1.79 (m, 2H), 1.44-1.50 (m, 2H), 1.20-1.31 (m, 4H), 0.84 (t, *J* = 4.0 Hz, 3H). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 189.75, 159.33, 149.36, 147.60, 141.61, 136.18, 133.27, 132.06, 131.60, 130.86, 129.98, 129.30, 128.83, 127.50, 126.99, 126.37, 125.09, 124.53, 124.46, 123.81, 123.01, 119.73, 119.33, 116.76, 115.00, 68.44, 31.61, 29.24, 25.79, 22.64, 14.08. HRMS (MALDI-TOF, m/z): [M+] calcd for (C<sub>43</sub>H<sub>38</sub>N<sub>2</sub>O<sub>2</sub>S) 646.2712; found, 646.2713.

# 7-(4-(Diphenylamino)phenyl)-10-(9-hexyl-9*H*-carbazol-3-yl)-10*H*-phenothiazine-3carbaldehyde (4c)

Yield: 112 mg, (66%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 9.68 (s, 1H), 7.61-7.68 (m, 1H), 7.50 (d, J = 8.8 Hz, 2H), 7.33-7.45 (m, 5H), 7.27-7.29 (m, 2H), 7.16-7.20 (m, 12H), 7.00-7.14 (m, 2H), 6.22-6.24 (m, 2H), 4.39 (t, J = 6.0 Hz, 2H), 1.81-1.87 (m, 2H), 1.33-1.40 (m, 2H), 1.20-1.26 (m, 4H), 0.84 (t, J = 6.8 Hz, 3H). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 189.78, 159.97, 148.66, 146.14, 146.09, 145.89, 141.88, 141.25, 140.77, 139.95, 139.23, 134.98, 132.28, 131.34, 129.78, 127.99, 127.55, 127.10, 126.67, 125.09, 124.13, 124.00, 123.93, 123.75, 123.28, 123.10, 122.78, 122.47, 119.20, 118.40, 118.12, 116.12, 115.52, 30.95, 30.68, 28.57, 26.16, 22.13, 14.02. HRMS (MALDI-TOF, m/z): [M+] calcd for (C<sub>49</sub>H<sub>41</sub>N<sub>3</sub>OS) 719.3017; found, 719.3025.

# 10-(9,9-Dihexyl-9*H*-fluoren-2-yl)-7-(4-(diphenylamino)phenyl)-10*H*-phenothiazine-3carbaldehyde (4d)

Yield: 130 mg, (72%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 9.60 (s, 1H), 7.85-7.88 (m, 1H), 7.68-7.69 (m, 1H), 7.39-7.41 (m, 1H), 7.27 (d, J = 6.0 Hz, 2H), 7.21-7.24 (m, 4H), 7.14-7.17 (m, 4H), 6.93-7.00 (m, 5H), 6.89-6.92 (m, 4H), 6.69-6.77 (m, 3H), 6.07-6.11 (m, 2H), 1.91 (t, J = 6.0 Hz, 4H), 0.88-1.00 (m, 12H), 0.67 (t, J = 7.6 Hz, 6H), 0.59 (m, 4H). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 189.65, 154.08, 152.44, 151.09, 149.43, 147.61, 147.23, 142.06, 141.51, 139.87, 138.44, 136.27, 133.20, 130.94, 129.31, 129.06, 127.97, 126.97, 125.92, 125.69, 125.06, 124.68, 124.48, 123.97, 123.81, 123.65, 123.01, 122.19, 119.90, 119.22, 118.83, 116.62, 114.82, 55.57, 31.62, 29.55, 23.88, 22.69, 22.49, 14.05. HRMS (MALDI-TOF, m/z): [M+] calcd for (C<sub>56</sub>H<sub>54</sub>N<sub>2</sub>OS) 802.4045; found, 802.4039.

**YR6** was synthesized according to the reported method.

A blue solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): *δ* =8.34 (s, 1H), 7.69 (s, 1H), 7.63 (d, *J* = 6.4 Hz, 1H), 7.59 (m, 1H), 7.39 (m, 2H), 7.32 (t, *J*= 6.4 Hz, 1H), 7.19 (t, *J*= 6.4 Hz, 1H),7.06 (d, *J*= 6.4 Hz, 1H), 6.98 (d, *J*= 6.8 Hz, 1H), 6.08 (s, 1H), 5.98 (s, 1H), 4.15 (m, 2H), 3.99 (m, 2H), 1.79 (m, 12H), 1.45–1.23 (m, 23H;),0.86 (t, *J*= 6.4 Hz, 3H). HRMS (MALDI-TOF): m/z: [M+] calcd for C48H55N3O4S, 769.3913; found, 769.3918.

**Ref:** Y. R. Shi, R. B. M. Hill, J. H. Yum, A. Dualeh, S. Barlow, M. Grätzel, S. R. Marder, M. K. Nazeeruddin, *Angew. Chem. Int. Ed.* **2011**, *50*, 6619–6621.

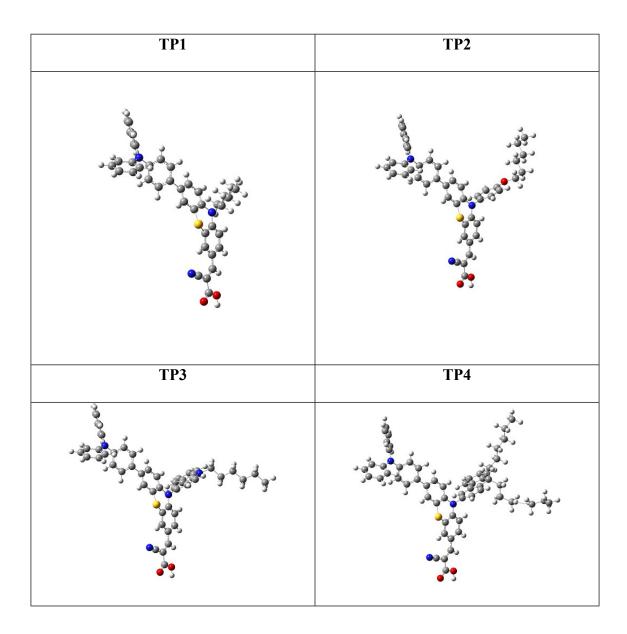



Figure S1. The optimized ground-state geometries of these dyes TP1–TP4.

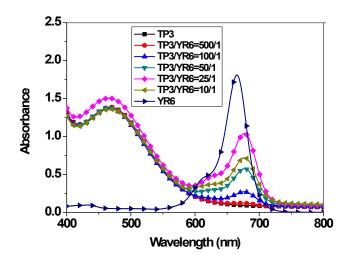



Figure S2. Absorption spectra of TP3, YR6 and co-adsorption on  $TiO_2$  films.