Supporting Information

Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method

Neeti Tripathi,^a Masatoshi Yanagida,^{ab} Yasuhiro Shirai,^{*ab} Takuya Masuda,^a Liyuan Han,^b and Kenjiro Miyano^a

^{*a*} Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

*E-mail: <u>shirai.yasuhiro@nims.go.jp</u>

^b Photovoltaic Materials Unit, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

Elements	MAPbI3 (No MACl)	MAPbI _{3-x} Cl _x (10 wt% MACl)	MAPbI _{3-x} Cl _x (20 wt% MACl)	MAPbI _{3-x} Cl _x (30 wt% MACl)
Cl	-0.30	0.83	1.26	1.54
Ι	67.70	58.74	63.97	57.04
Pb	32.68	40.43	34.77	41.43

Table S1: Weight percentages of Cl, I, and Pb, estimated from EDX analysis.

Figure S1: XRD patterns of PbI_2 annealed at 70°C for 30 min. (inset shows the corresponding SEM image)

Figure S2: XPS spectra of (a) I_{3d} core levels with different MACl concentration (b) Cl-2p core level spectra of 20% MACl doped perovskite film at different penetration depths.

Figure S3: SEM images of MAPbI₃ and MAPbI_{3-x}Cl_x perovskite films before annealing: (a)-(b) top and cross-sectional view of MAPbI₃, respectively (c)-(d) top and cross-sectional view of MAPbI_{3-x}Cl_x, respectively.

Figure S4: Comparison of SEM images (a) PbI_2 , annealed at 70°C for 30 min (b) $PbI_2/CH_3NH_3PbI_3$ annealed at 100 °C for 2 h. (c) $PbI_2/CH_3NH_3PbI_{3-x}Cl_x$ annealed at 100 °C for 2 h.

Figure S5: The device performance dependences on the aperture size

Table S2: The device performance as function of the aperture size.

Device area	J_{sc} (mA-cm ⁻²)	$V_{oc}(V)$	FF	PCE (%)
0.18 cm^2	17.49	0.90	0.75	11.98
0.10 cm^2	17.64	0.88	0.78	12.17
0.08 cm^2	17.59	0.87	0.79	12.25

Figure S6: Fill Factor distribution of 120 MAPbI_{3-x}Cl_x devcies with device area 0.18 cm².

Figure S7: Hysteresis index distribution of 80 MAPbI_{3-x}Cl_x devcies with device area 0.18 cm^2 .

Figure S8: J-V curve of MAPbI_{3-x}Cl_x device before and after 1 month.

Spectral match for c-Si:

Figure S9: Emission spectrum of the light source used for J-V characterizations.