High-performance Hg²⁺ removal from ultra-low-concentration

aqueous solution using both acylamide- and hydroxyl-functionalized

metal-organic framework

Feng Luo,* Jing Li Cheng, Li Long Dang, Wei Na Zhou, Hai Lv Lin, Jiang Qiang Li, Shu Juan Liu, and Ming Biao Luo

Table S1 Adsorption isotherm constants for Hg²⁺ onto MOF material.

Langmuir isotherm			Freundlich isotherm		
<i>q_{max}</i>	K _L	R ²	K_F	$\frac{1}{n}$	R ²
mg g ⁻¹	mg L ⁻¹		mg g ⁻¹		
333.33	2.776	0.9145	71.593	0.671	0.816

Table S2 Thermodynamic parameters for sorption of Hg²⁺.

$\Delta H^{0}(\text{kJ mol}^{-1} \text{k}^{-1}) \Delta S^{0}(\text{J mol}^{-1} \text{k}^{-1})$		ΔG^0 (kJ mol ⁻¹)		
		298.15	308.15	318.15
-3.93	67.33	-24.01	-24.68	-25.35

Fig. S1 PXRD patterns simulated from single crystal data, of synthesized samples and Hg²⁺ loaded samples.

Fig. S2 pH effect on the adsorption of Hg²⁺ (C_0 (Hg²⁺)=100 ppb, v=40 mL, m(adsorbent)=2 mg, T=25 °C, t=2 h).

Fig. S3 Effect of contact time on Hg(II) removal (${}^{C_0}(Hg^{2+})=100$ ppb, v=40 mL, m(adsorbent)=2 mg, T=25 °C, pH=5)

Fig. S4 Pseudo-first-order kinetic plot (a) and pseudo-second-order kinetic plot (b) for the adsorption of Hg(II) onto adsorbent.

Fig. S5 Adsorption isotherms fitted by the Langmuir (a) and Freundlich (b) models (${}^{C_0}(Hg^{2+})=100$ ppb, v=40 mL, m(adsorbent)=2 mg, T=25 °C, t=1 h).

Fig. S6 The TEM image of the MOF material before and after the adsorption of Hg(II).

Fig. S7 SEM and EXD spectra of the MOF material after loading Hg²⁺.

Fig. S8 TG curves of as-synthesized and Hg²⁺-adsorbed MOF sample.