†Electronic Supplementary Information

Hierarchical mesoporous anatase TiO₂ nanostructures with efficient photocatalytic and photovoltaic performances

Hyung-Bae Kim,^a Harkjin Kim,^b Wan In Lee,^b and Du-Jeon Jang*^a

^aDepartment of Chemistry, Seoul National University, NS60, Seoul 151-747, Korea ^bDepartment of Chemistry, Inha University, Incheon 402-751, Korea

Fig. S1 Illustration of a homemade gas-tight reactor for photocatalytic CO₂ reduction.

Fig. S2 SEM (left) and TEM (right) images of anatase TiO_2 nanostructures A40 (top) and A85 (bottom).

Fig. S3 HRXRD patterns of indicated anatase TiO_2 crystals. The standard diffraction pattern of anatase TiO_2 (JCPDS card no. 84-1286) is also shown in the bottom.

Fig. S4 TEM images of the mesoporous surfaces of anatase TiO₂ nanostructures A20 (a) and A67 (b). Circles indicate multiple pores.

Fig. S5 Photocatalytic oxidation curves of isopropanol by using anatase TiO_2 crystals A67 and commercial TiO_2 Degussa P25. The amounts of evolved CO_2 were monitored from the photocatalytic oxidation of isopropanol as a function of UV-visible irradiation time.

Sample Evolved CO ₂ (ppmv min ⁻¹		Evolved CH ₃ OH (ppmv min ⁻¹)	
A00	1.85	-	
A20	8.07	-	
A40	9.28	-	
A67	10.23	0.31	
P25	7.10	0.10	

 Table S1
 Photocatalytic performances of TiO₂ nanostructures

Table S2 Photovoltaic operation parameters of DSSCs without wearing a light mask produced withanatase TiO_2 nanostructures

Sample	V _{oc} (mV)	J _{sc} (mA/cm ²)	Fill Factor (%)	Efficiency (%)
A00	820.92	7.01	68.51	3.95
A20	826.00	7.98	69.05	4.56
A40	827.90	8.77	68.78	4.99
A67	784.61	11.7	69.77	6.39

Fig. S6 Photocatalytic (a) and photovoltaic (b) performances of as-synthesized anatase TiO_2 crystals. The amounts of evolved CO₂ were monitored from the photocatalytic oxidation of isopropanol under UV-visible irradiation for 60 min, and the photovoltaic conversion efficiencies (η) of DSSCs were measured with (closed) and without (open) a light-shading mask.

Fig. S7 SEM images of the film surfaces of anatase TiO₂ nanostructures A00 (a), A20 (b), and A67 (c).