Supporting Information

Highly efficient photocatalytic conversion of CO_2 into solid CO using H₂O as a reductant over Ag-modified ZnGa₂O₄

Zheng Wang^a, Kentaro Teramura^{a,b,c*}, Saburo Hosokawa^{a,b}, Tsunehiro Tanaka^{a,b,*}

- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- b. Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University,
 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
- c. Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

Figure S1 $\,$ XRD patterns in the range between 28° and 40° of ZnGa_2O_4 calcined at 973 $\,$

K for 20 h and ZnO as a reference.

Electronic Supplementary Information (ESI)

Figure S2 TEM images of Ag-modified $ZnGa_2O_4$ prepared by chemical reduction method before (A, B) and after (C, D) the photocatalytic conversion of CO₂. $ZnGa_2O_4$ was calcined at 1123 K for 40 h. The loading amount of Ag cocatalyst was 1.0 wt%.